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1 Introduction

The introductory Chapter 7 on di¤usion in B.Ø. is hard, partly because of a somewhat detailed
(but correct, of course) notation. The results are also given in a general form, and sometimes
perhaps too general for most applications.

Di¤usion is originally the chaotic way molecules of �uids are mixed due to their motion. In
fact, physical Brownian motion is a visible example of di¤usion (spreading) of tiny particles in
a solution. Over time, di¤usion has been proposed as a useful way of modelling a lot of physical
phenomena, like heat transfer and spreading of bacteria, deceases, rumors, and even intelligent
life in the universe. Di¤usion is material transport induced by di¤erences in concentration,
leading to a special type of partial di¤erential equations called di¤usion equations. The simplest
(and by far the most studied) di¤usion equation has the form

@u

@t
= r2u =

nX
i=1

@2u

@x2i
; (1)

where, e.g. u (x; t) is the concentration of some material spreading out in a �uid.

Brownian motion is, as visualized by numerical simulations, also a model of how particles spread
out from a location, say x = 0, as time increases. After a certain time t, a number of particles,
starting at x = 0 for t = 0 have spread into a cloud with density proportional to the probability
density of Bt, that is,

p (x; t) =
1

(2�t)n=2
exp

 
�jxj

2

2t

!
: (2)

The distribution broadens as t increases, and tends, for t ! 0, to what is called a �-pulse at
x = 0. Moreover, the function in Eqn. 2 is, for t > 0, a solution to the equation

@p

@t
=
1

2
r2p (3)

(veri�cation left as an exercise to the reader!).

Thus, we observe an interesting connection between the solutions of the simple stochastic
di¤erential equation

dXt = dBt (4)

and the partial di¤erential Eqn. 3: If we are only interested in the probability law of Eqn. 4, we
could as well solve Eqn. 3. In fact, as will be more clear below, the solution of Eqn. 3 de�nes
a stochastic process which turns out to be Brownian motion! This connection represents the
core of Chapters 7 and 8 in Øksendal, but we �rst need a few comments about what is called
Markov processes.
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2 Markov Processes

A Markov process is a stochastic process which generalizes the perhaps more familiar concept
of aMarkov chain. The Markov chain is a discrete Markov process, and both the de�nition and
the general properties of Markov processes resemble the discrete case. Below we summarize
some of the more basic properties of Markov processes.

There are various (equivalent) ways of de�ning a Markov process, and for us the following
de�nition appears to be most suitable. Let Xt be a stochastic process on [0;1) andMt be the
corresponding �ltration, that is,Mt is the �-algebra generated by fXsg, s � t.

A stochastic process is a Markov process if for all 0 � s � t,

E (XtjMs) = E (XtjXs) : (5)

Here, E (XtjXs) is just a short way of writing expectation conditional the �-algebra generated
Xs, namely E (XtjFXs).
It is possible to prove that the de�nition implies that for all bounded Borel functions f and
0 � s � t,

E (f (Xt) jMs) = E (f (Xt) jXs) ; (6)

and sometimes this is seen as the de�nition of a Markov process. In fact, the following 3 di¤erent
de�nitions are equivalent (0 � s � t):

1. P (Xt 2 BjMs) = P (Xt 2 BjFXs) for all B 2 B,

2. E (XtjMs) = E (XtjXs) (= E (XtjFXs) ),

3. If f is any bounded Borel function, E (f (Xt) jMs) = E (f (Xt) jFXs).

Digression: For a Borel function f , the inverse sets, f�1 (B), of Borel sets, B 2 B, are
Borel sets. Typically for us, a Borel function is a mapping from Rm to Rn for some m and n.
Therefore, a mapping h, consisting of a measurable function g composed with a Borel function,

h (x) = (f � g) (x) = f (g (x)) ;

will also be measurable (Recall the de�nition of a measurable function, where the inverse image
of all Borel sets are measurable sets).

The �rst thing to check out is whether there really exist Markov processes, and Brownian
motion itself (withMt = Ft) is an obvious example:

E (BtjFs) = Bs

= E (Bt �BsjBs) + E (BsjBs)
= E (BtjBs) : (7)

(We already know that Bt is a Martingale, E (BsjBs) = Bs, and that E (Bt �BsjBs) = 0).
More generally, Markov processes are constructed by means of so-called transition functions
(generalizing the transition matrix of the Markov chain). In simple terms, the transition
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Figure 1: Illustration of the Chapman-Kolmogorov equation.

function, p (t; u; A), gives the probability that Xt 2 A, assuming that X0 = u. Formally, a
(time homogeneous) transition function for a Markov process, where t 2 [0;1), u 2 Rn, and
A 2 B (Rn), ful�ls

1. p (t; �; A) is a Borel function from Rn ! R;

2. p (t; u; �) is a probability measure on Rn;

3. p (t; u; A) satis�es the Chapman-Kolmogorov equation for all positive t and s:

p (t+ s; u; A) =

Z
Rn
p (s; v; A) p (t; u; dv) (8)

Note that the integral is a regular Lebesgue integral of the form
R
Rn hd�, where h (v) = p (s; v; A)

is a Borel function on Rn, and d� is the probability measure de�ned by � (B) = p (t; u; B). In
essence, the Chapman-Kolmogorov equation says that we go from location u at t = t0 into
the set A at a later time t0 + t + s by passing through dv at time t0 + t, and then continuing
on to A. For each separate step, we apply the transition function. The integral represents
all possible ways this may be done by integrating over all v 2 Rn, and since passing through
di¤erent points at this time are exclusive events, the integral in Eqn. 8 must be valid. The
argument is visualized in Fig. 1.

Note that even if it is possible to de�ne transition functions for any process, it is the Chapman-
Kolmogorov equation that is the key for obtaining Markov processes. Referring again to Fig.
1, for a general process the transition function p (s; v; A) will also depend on what happened
prior to t0 + t, e.g. the position u.

From the transition functions, the existence of the corresponding stochastic process follows from
Kolmogorov�s Existence Theorem (B.Ø., Thm. 2.1.5), where the �nite dimensional distributions
are de�ned by

�t1;t2;��� ;tk (F1 � F2 � � � � � Fk)

=

Z
F1�����Fk

p (t1; x; dx1) p (t2 � t1; x1; dx2) � � � p (tk � tk�1; xk�1; dxk) : (9)
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These measures, which depend on x; de�ne the �nite dimensional probability measures for a
(Markov) process Xt starting at x, i.e. the probability of the simultaneous events

P (Xt1 2 F1; Xt2 2 F2; � � � ; Xtk 2 Fk) : (10)

In many practical situations, the transition function may be written in term of a probability
density � (t; u; v) so that

p (t; u; A) =

Z
A

� (t; u; v) dv; (11)

In this case, the Chapman-Kolmogorov equation takes the form

p (t+ s; u; A) =

Z
Rn
� (t; u; v) dv

Z
A

� (s; v; w) dw

=

Z
A

�Z
Rn
� (t; u; v)� (s; v; w) dv

�
dw (12)

=

Z
A

� (t+ s; u; w) dw:

Hence,

� (t+ s; u; w) =

Z
Rn
� (t; u; v)� (s; v; w) dv: (13)

The transition function for the standard Brownian motion is of this form:

p (t; u; A) =

Z
A

1

(2�t)n=2
e�ju�vj

2=2tdv; (14)

and then Eqn. 13 is a convolution integral (proof left to the reader!). See B.Ø., Sec. 2.2
how this is utilized for constructing the Brownian motion by �rst stating the �nite dimensional
simultaneous distributions, and then using Kolmogorov�s Existence Theorem.

3 The Markov Property of Itô Di¤usion

A stochastic di¤erential equation

dXt = b (t;Xt) dt+ � (t;Xt) dBt (15)

is also called an Itô di¤usion. Note that the functions b and � are dependent only on Xt and
t, and not on anything happening earlier than time t. In this chapter, we always assume that b
and � satisfy the conditions stated in Thm. 5.2.1 (for existence and uniqueness of the solution).
If an explicit dependence on t is missing in b and �, the di¤usion is called autonome or time
homogeneous. This is similar to what we say about an ordinary di¤erential equation where the
right hand side does not depend explicitly on t. For an autonome equation there is no preferred
origin of time. All di¤usions below are autonome,

dXt = b (Xt) dt+ � (Xt) dBt: (16)
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Not all Itô processes are di¤usions: Since it is only required that b and � should be adapted
to the �ltration Ft, b and � may well depend on something happening before time t, e.g.
dXt = Bt=2dBt.

Recall that we say that two processes Xt and Yt are equivalent (as stochastic processes) if X0

= Y0 = Z, and all �nite dimensional distributions are equal. For Brownian motion, (Bt; B0 = 0)
and ~Bt = Bt+s �Bs are equivalent.

We follow the notation in B.Ø. and let
Xs;x
t (17)

denote the solution of Eqn. 16 at time t, given the starting time s and the starting location x.
Occasionally, if s = 0, we may write

Xx
t = Xs;x

t ; (18)

and Xt = X0
t .

As discussed in B.Ø., the solutions of an autonome Itô di¤usion are time invariant in the sense
that Zt = X0;x

t and Yt = Xs;x
s+t are equivalent: Both start at x at t = 0, and all their (�nite

dimensional) probability measures will be the same.

Since we may write

Xx
t =

Z t

0

[b (Xx
u) du+ � (Xx

u) dBu]

=

Z s

0

[b (Xx
u) du+ � (Xx

u) dBu] +

Z t

s

[b (Xx
u) du+ � (Xx

u) dBu] (19)

= Xx
s +

Z t

s

[b (Xx
u) du+ � (Xx

u) dBu] ;

it is intuitively clear that the last integral depends on Xx
s and the Brownian motion from s to

t, but is independent of anything happening before time s. Therefore, we would expect that an
Itô di¤usion is a Markov process. However, a complete proof of, say,

E (Xx
t jMs) = E (X

x
t jXx

s ) ; (20)

seems to be cumbersome (There are alternate routes to this result, requiring theory we have
not covered).

As far as I have been able to sort out, a simple proof only exists for di¤usions without drift,

Xx
t =

Z t

0

� (Xx
u) dBu: (21)

We may then utilize two important properties of the Itô integral. First of all, Xx
t is Ft adapted

(True here because of the Itô integral, and, in fact, true for any di¤usion by Theorem 5.2.1).
Moreover, the Itô integral is a martingale with respect to Ft. It then follows, since all sets in
Mt is also in Ft, thatMt � Ft. Together with the telescope rule for conditional expectation
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(Theorem B.3 in B.Ø.), the argument goes as follows ( s < t ):

E (Xx
t jMs) = E (E (X

x
t jFs) jMs)

= E (Xx
s jMs)

= Xx
s

= E
�
Xx
s jFXx

s

�
(22)

= E
�
E (Xx

t jFs) jFXx
s

�
= E

�
Xx
t jFXx

s

�
:

Theorem 7.1.2 in B.Ø. is the basic Markov property of the Itô di¤usion. The proof of the
theorem looks to be more cumbersome than necessary, but, as one could expect, it has not
been possible to simplify it signi�cantly.

We may state the theorem by �rst introducing the function

Gh (y) = E (f (X
y
h)) ; (23)

where f is a bounded Borel function. The stochastic variable ! ! Xy
h (!) has a probability

distribution �y;h, and

Gh (y) = E (f (X
y
h)) =

Z
Rn
f (x) d�y;h (x) : (24)

Note that the composite function f �Xy
h isMXy

h
-measurable, as well as Fh-measurable, since

f is a Borel function (comments above).

It is proved later in B.Ø. (Lemma 8.1.4) that Gh will be continuous if f is continuous.

Theorem 7.1.2 can now be stated as follows:

E (f (Xt+h) jFt) = Gh (Xt) : (25)

Both sides are stochastic variables, and the expression should be read

E (f (Xt+h) jFt) (!) = Gh (Xt (!)) ; ! 2 
: (26)

We thus have an explicit expression for the conditional expectation on the left side if we know
the function Gh and Xt. As shown in Eqn. 24, Gh is may be computed from the distribution
of Xy

h .

Proof of Theorem 7.1.2

Let r > t and consider X t;x
r (!). For a �xed x;

X t;x
r = x+

Z r

t

b (Xu) du+

Z r

t

� (Xu) dBu (27)

is independent of Ft since nothing on the right hand side depends on anything happening
before or at time t (NB! In the Itô integral we only use di¤erences of the Brownian motion, and
Bt+� � Bt is independent of Bt for all � > 0). Note also that we, according Eqn. 19 (and the
uniqueness of the solution of the Itô di¤usion, Thm. 5.2.1), may write

Xt+h (!) = X
t;Xt(!)
t+h (!) : (28)
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Fix t and h and let
g (y; !) = f

�
X t;y
t+h (!)

�
: (29)

Referring to the somewhat technical Exercise 7.6, B.Ø. shows that it is possible to approximate
g (y; !) by a sum

g (y; !) v
X
k

�k (y) k (!) : (30)

Following the rules of conditional expectation,

E (�k (Xt) k (!) jFt) = �k (Xt)E ( k (!) jFt)
= �k (y)E ( k (!) jFt) jy=Xt (31)

= E (�k (y) k (!) jFt) jy=Xt :

By going to the limit (which we do not discuss in detail), this establishes that

E (g (Xt; !) jFt) = E (g (y; !) jFt) jy=Xt : (32)

We now observe that by Eqns. 28 and 29

E (g (Xt; !) jFt) = E
�
f
�
X t;Xt
t+h (!)

�
jFt
�

= E (f (Xt+h) jFt) ; (33)

that is, the left hand side of Theorem 7.1.2.

Let us then consider the right hand side of Eqn. 32:

E (g (y; !) jFt) jy=Xt(!) = E
�
f
�
X t;y
t+h (!)

�
jFt
�
jy=Xt(!)

(1)
= E

�
f
�
X t;y
t+h (!)

��
jy=Xt(!)

(2)
= E

�
f
�
X0;y
h (!)

��
jy=Xt(!) (34)

= Gh (y) jy=Xt(!)
= Gh (Xt (!)) : (35)

Equality (1) follows since f
�
X t;y
t+h (!)

�
is independent of Ft according to the remark following

Eqn. 27, and equality (2) by the time homogeneity of the Itô di¤usion. This proves Theorem
7.1.2. However, the key result which makes the way for us is indeed Eqn. 32, and we have not
really proved that in detail.

Theorem 7.1.2 has an interesting interpretation in that it gives a recipe for computing expec-
tations conditional on events happening to Xt. First of all,

E (f (Xt+h) ;Xt = y) = G (y) :

More generally, if A is a Borel set in Rn such that �Xt (A) > 0, then

E (f (Xt+h) ;Xt 2 A) =
R
A
Gh (y) d�Xt (y)

�Xt (A)
: (36)

(Check that!).
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