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This short note summarizes the material about the Kolmogorov and Fokker-Planck Equations
which is covered in the lectures, but not in Øksendal.

The topic is still di¤usion, and we have limited ourselves to time homogeneous (autonome)
Itô di¤usions of the form

dXt = b (Xt) dt+ � (Xt) dBt: (1)

The conditions on b and � are in general the same as in Theorem 5.2.1, thus ensuring well-
behaved solutions. In particular, Xt is continuous a.s.

Itô di¤usions are Markov processes, and the main result in Chapter 7.1 was Theorem 7.1.2.
Changing the notation slightly, we shall from now on write

u (t; x) = E (f (Xx
t )) = E

x (f (Xt)) : (2)

Observe that u (t; x) is the same as Gt (x) in the note about di¤usion. Here f is a bounded
Borel function as in Theorem 7.1.2, or a smoother function in C2c (Rn) if we need to compute
A (f) for the in�nitesimal generator of the di¤usion. Theorem 7.1.2 may be restated as

Ex (f (Xr+t) jFr) (!) = EXr(!)f (Xt) = Gt (Xr (!)) = u (t;Xr (!)) : (3)

We also recall that the generator A is the second order di¤erential operator de�ned by

Af =
X
i

bi (x)
@f

@x
(x) +

1

2

X
i;j

�
� (x)� (x)0

�
ij

@2f

@xi@xj
(x) : (4)

It is convenient to assume that b and � are bounded, continuous functions, and that f and
its �rst and second derivatives in Eqn. 4 are continuous functions vanishing at 1, that is,
f 2 C20 (Rn). Then Af (x) will be a bounded, continuous function in x. This in turn implies
that in Dynkin�s Formula, the function within the integral,

t! Af (Xx
t (!)) ; (5)

is bounded and continuous a.s. Also the expectation,

t! Ex [Af (Xt)] =

Z



Af (Xx
t (!)) dP (!) ; (6)

will be a continuous function of t by dominated convergence.

The main result in Chapter 8.1 is the following theorem:

Let f 2 C20 (Rn) and u (t; x) = Ex (f (Xt)). Then

(i) @u
@t
= Au; t > 0; x 2 Rn;

(ii) limt!0 u (t; x) = f (x) ; x 2 Rn
(iii) u is unique.

(7)
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The theorem is called Kolmogorov Backward Equation in B.Ø., but this does not seem to be
quite in accordance with other books on the same topic. We will return to this later. For
readers familiar to PDEs, the theorem states that u (t; x) is the unique solution to the equation
@u
@t
= Au for t > 0; x 2 Rn, satisfying the initial condition u (0; x) = f (x). For standard

Brownian motion, the equation is the familiar parabolic heat (or di¤usion) equation,

@u

@t
=
1

2
r2u: (8)

There are three key points in the proof of this theorem. The �rst is to establish that @u=@t
really exists, and this follows from Dynkin�s Formula applied with the constant stopping time
� = t:

u (t; x) = Ex (f (Xt)) = f (x) + Ex
�Z t

0

Af (Xs) ds

�
: (9)

Since Af (Xs) is bounded, the expectation may be moved inside the integral by Fubini�s
Theorem, and since the integrand of the s-integral is then a continuous function in s, we have
immediately that

@u

@t
= ExAf (Xt) (10)

by the Fundamental Theorem of Calculus. It is tempting to write

ExAf (Xt) = AEx (f (Xt)) ; (11)

but this seems to be rather unlikely, since Af (Xt) contains terms like

� � �+ bi (Xt)
@f

@xi
(Xt) + � � � : (12)

However, it is nevertheless true, and the idea is to show that Au (t; x) indeed exists by con-
sidering the Generator Theorem,

Au (t; x) = lim
r!0

Ex [u (t;Xr)]� u (t; x)

r
: (13)

Note that here, t is just a parameter. We do not yet know whether this limit exists, so we
consider the �rst term in the numerator on the RHS of Eqn. 13 separately:

Ex [u (t;Xr)] = E
x
�
EXr (f (Xt))

�
= Ex [Ex (f (Xr+t) jFr)] (14)

= Ex (f (Xr+t))

= u (t+ r; x) :

The �rst equality is the de�nition of u, the second is Theorem 7.1.2 (here Eqn. 3), and the
third is the �double-expectation rule�for conditional expectations, viz.,

E (E (XjH)) =
Z



E (XjH) dP =
Z



XdP = E (X) : (15)
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We now introduce Eqn. 14 into 13, and note that we already know (from Eqn. 10) that this
limit exists and is equal to @u=@t. Dynkin�s Formula (Eqn. 9) shows immediately that

lim
t!0

u (t; x) = f (x) = u (0; x) : (16)

The third key element in the proof is uniqueness of the solution, which is shown by an elegant
argument in the book. Because the equation is linear, it is enough to show that if there is a
function w 2 C1;2 (R� Rn) so that

�@w
@t
+ Aw = 0; t � 0; x 2 Rn; (17)

w (0; x) = 0; (18)

then w (t; x) = 0 for all t > 0.

Let Yt be the Itô di¤usion on R� Rn de�ned by

dYt =

�
�dt
dXt

�
=

�
�1
b

�
dt+

�
0
�

�
dBt (19)

The generator of Yt, ~A, as a di¤erential operator acting on functions on R� Rn, is just
the operator on the left hand side of Eqn. 17 (check it!). Note that for the start position
Y0 = (s; x),

Yt = (s� t;Xx
t ) ; t � 0: (20)

We apply Dynkin�s Formula for Yt, the function w, the start position (s; x), and, following
BØ, the stopping time � = t ^ �R, �R = inf ft > 0; jXtj � Rg,

Es;x (w (Y� )) = w (Y0) + E
s;x

Z �

0

~Aw (Yu) du: (21)

Clearly, E� <1 and the last term vanishes since ~Aw = �@w
@t
+ Aw = 0 according to the

assumptions. Thus,
w (s; x) = E(s;x) (w (Y� )) �!

R!1
E(s;x) (w (Yt)) : (22)

The �nal trick is to let t = s:

w (s; x) = E(s;x) (w (Ys)) = E
(s;x) (w (0; Xs)) = w (0; Xs) = 0; (23)

again according to the assumption. This proves the theorem (7).

We recall that Markov processes may be characterized in terms of transition functions, and in
some fortunate cases these transition functions may even be expressed by means of transition
densities, which we here shall write p (t; x; y) (a slight change compared to the previous note
about di¤usion). The transition density is a probability density in y for all x and t-s, and we
obtain the probability for Xt 2 A when X0 = x simply as

P (Xx
t 2 A) =

Z
A

p (t; x; y) dy: (24)
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Recall that the transition densities for the standard Brownian motion have the simple form

p (t; x; y) =
1

(2�t)n=2
exp

 
�jx� yj2

2t

!
: (25)

Moreover, the transition densities satisfy the Chapman-Kolmogorov Equations,

p (t+ s; x; y) =

Z
Rn
p (s; x; z) p (t; z; y) dz: (26)

If the di¤usion we are considering has transition densities, we may write the solution to the
problem above as

u (t; x) = Ex (f (Xt)) =

Z
Rn
f (y) p (t; x; y) dy: (27)

By applying the uniqueness in the theorem above to the two problems

@u

@t
= Au; u (0; x) = f (x) ; (28)

@~u

@t
= A~u; ~u (0; x) = u (t0; x) ; (29)

we observe that
u (t0 + t1; x) = ~u (t1; x) : (30)

We leave to the reader also to verify Eqn. 30 by applying the Chapman-Kolmogorov equations.

What about the equation for p? We shall assume that p (t; x; y) for t > 0 are smooth and nice
functions so that we may move derivations in and out of integrals, etc. First of all, we recall
Eqn. 10,

@u

@t
= Ex (Af (Xt)) ; (31)

and hence, introducing Eqn. 27 and moving @=@t inside the integral,Z
Rn

�
f (y)

@p (t; x; y)

@t
� Af (y) p (t; x; y)

�
dy = 0: (32)

We now apply a well-known technique from Hilbert space theory, namely the concept of the
adjoint operator. The adjoint operator is de�ned by the identityZ

A� (y) �  (y) dy =
Z
� (y) � A� (y) dy; (33)

supposed to hold for all functions � and  so that A�; A� , and the integrals exist. In
the present case, partial integrations (applying functions in C2c (Rn)) show that the adjoint
operator has the form

A� (y) = �
X
i

@

@yi
[bi (y) (y)] +

1

2

X
i;j

@2

@yi@yj

h�
� (y)� (y)0

�
ij
 (y)

i
: (34)
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(If necessary, read more about this in any book on PDE�s or Hilbert space theory). If we
apply the de�nition of the adjoint operator in Eqn. 32, we obtain to separate f (y) from the
rest, Z

Rn
f (y)

�
@p (t; x; y)

@t
� A�(y)p (t; x; y)

�
dy = 0: (35)

The subscript (y) simply indicates that y is the variable to use in A. The identity will hold
for all functions f 2 C2c (Rn). If the bracket is a continuous function, as will be the case if p
is smooth (t > 0), the only possibility is that

@p (t; x; y)

@t
� A�(y)p (t; x; y) = 0: (36)

(This is a simple, but very useful argument: If g is continuous andZ
Rn
f (y) g (y) dy = 0 (37)

for all f-s in a dense set in L1 so that the integral exists, then g (y) � 0. Here C2c (Rn) is
dense in L1 (Rn). What is the related result in L2 (Rn)?).
Starting from a point x, Eq. 36 de�nes the development of p (t; x; y) forward in time. For
Brownian motion,

A = A� =
1

2
r2; (38)

and the equation for p is identical to the equation for u, but this is not true in general. If
you know about distribution theory, you will notice that the solution converges towards a
�-function at x when t! 0,

lim
t!0

p (t; x; y) = � (x� y) : (39)

(Do not worry about this if you no not know about distribution theory!).

Equation 36 is called the Fokker-Planck Equation or Kolmogorov�s Forward Equation.

It is now also easy to derive what is commonly denoted Kolmogorov�s Backward Equation,
starting with the expression for u in Eq. 27 and @u=@t � Au = 0. Again we move @=@t and
A inside the integral and obtainZ

Rn

�
@

@t
f (y) p (t; x; y)� A(x)f (y) p (t; x; y)

�
dy

=

Z
Rn
f (y)

�
@p (t; x; y)

@t
� A(x)p (t; x; y)

�
dy: (40)

The same argument as above leads to

@p (t; x; y)

@t
= A(x)p (t; x; y) : (41)

Note that here the generator works on x; whereas y is �xed. The equation enables us to
determine p backward in time, say

~p (s; x) = p (t0 � s; x; y0) ; 0 < s � t0: (42)

The equation for ~p becomes
@~p

@s
= �A~p; (43)

and this is the equation that is usually called Kolmogorov�s Backward Equation.
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