1 SOLUTION OF LINEAR STOCHASTIC EQUA-
TIONS
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The linear stochastic equations make up an important class of models, and, similarly to
the ordinary linear equations, there is a general analytic approach to their solution.

Recall that a regular first order differential equation of the form

WO iy +a) 1)

may be solved by multiplying the equation by an integrating factor, h (t),
hy' = h(py +q),

so that
hy' = (hy)" — W'y = hpy + hq. (2)

By choosing b/ = —hp, that is, h (t) = exp (— ftz p(s) ds), the innermost terms on both
sides cancel, and we are left with

(hy)" = hq. (3)
By integration, we obtain
t
B YO~ bty () = [ h()a(s)ds (@)
to
or .
oy 2 V) L) a(5)ds 5
o h(t) |
It turns out that the same trick also works for linear stochastic equations of the form
Assume that h (t) satisfies b’ = —hp as above, and consider the 1t6 process
Y, = h(t) X, (7)

If we apply the Ito formula, we obtain

dY, = I (t) X,dt + h (t) dX,
— () Xudt + h (8) [p (t) Xudt + q (t) B} (®)
— h(t)q(t)dB,.

Now both sides may be integrated and

VoY= [ h(6)a()an, )

to
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or

QRS /t:p“) ). (10)

1.1 Physical Brownian Motion: The Ornstein-Uhlenbeck-Langevin
Equation

Consider a small particle in a fluid, constantly and randomly hammered on by the sur-
rounding fluid molecules. Although we are on the limits of continuous medium model
when the diameter of the particle is O (107%m), we may argue that since the dynamic
viscosity of water or air is about 107%m?/s, a velocity of 1m/s would correspond to a
Reynold’s number of O (1), we are within the linear friction range. For one dimensional
motion, the position S (¢) would then be determined by the (non-dimensional) equation
of motion,

d*S (t) ds (t)
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Here p is the viscous damping (or friction) coefficient and W the ”impulsive” excitation
force. The impulsive force consists of random knocks varying in strength and moment of
occurrence. The proper stochastic model for W (¢) is that of a Poisson point process.

—W(t). (11)

We denote the particle velocity by X and rewrite Eqn. 11 in our way as

This is a quite famous model not only for physical Brownian motion (The Ornstein-
Uhlenbeck model), but also for modelling so-called ”shot noise” in electrical circuits (The
Langevin model). The simple discrete variant of the model is

Xj+1 — Xj = —/LX]At + €j, (13)

or
Xy = (1 — pAt) X; + 2, (14)
which we recognise as the standard auto-regressive stochastic process of order 1 (AR-1).

Eqn. 12 is a linear SDE of the form above with constant coefficients, and we leave to
reader to show that the complete solution may be written as

t
X, =Xpe " 40 /0 e "=*)4Bs. (15)

The solution consists of a transient dying out as e #!, and a contribution witch keeps the
motion going. The expectation of X; is simply

E(X;) =E(Xp)e ™, (16)
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since the expectation of the It6 integral is always 0. For the variance of X;, we make the
reasonable assumption that X is independent of the Brownian motion, and then, from
Eqn. 15,

t
Var (X;) = e " Var (X,) + Var (a/ e_“(t_s)dBS) : (17)
0
By the It6 isometry,
t 2 t 2
E <0’/ e_“(t_s)st) = 0/ e M=) B,
0 0 L2()
112
= ”06 e )HL2([0,t]xQ) (18)

t
202/ e~ 21(t=3) s (19)
0

2

o —2
= @ (1 — e Mt) .
From this we conclude that
o? o?
Var (X;) = e 2" Var (X,) + % (1—e2) p— 2’ (20)
a reasonable result.
What about the position itself? Now
dSt — Xtdt7 (21)
and hence .
Sy = Sy —1—/ X.ds. (22)
0

Since X is clearly integrable on L? ([0, ¢] x €), we may interchange fg and E, so that
t
ES, = E50+/ E(X,)ds
0

t
= ESO + / E (Xo) e_“tds (23)
0

:ESO—F%(l—e_‘ut)

In the limit ¢ — oco, we observe a permanent shift in the average position if EXq # 0.

The variance of the particle is also interesting. For simplicity, we assume that ESy; = 0,

EXy = 0, so that
t t s
Sy = / X,ds = / ( / ae“(su)dBu) ds. (24)
0 0 u=0

This is an iterated integral, and we have not really discussed any type of Fubini-like
theorems involving It6 integrals. However, in the present case, the integrand of the inner
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Ito integral is so simple that it is no problems involved in interchanging the order of
integration, hence

t s ot t
Sy = a/ (/ e“(s_“)ds) dB, = %/ (1- e“(t_“)) dB,. (25)
0 s=u 0

The integral then becomes a simple Itd integral, and by the It6 isometry,

2 pt
) ag s 2
Var St = HStHLQ([U {xQ) = (—) /0 (1 - e“(t )) ds

1
(0>2 [ 1 t _out )
== t+ — (-3 +4e " —e™ } 26
. 2 ) (
"3—2153, for small t-s,
~ {72 ; (27)
(;) (t — Z) , for large t-s.

It is interesting to see that the behaviour for small values of ¢ is distinctly different from
that of the standard Brownian motion.

1.2 Linear systems with stochastic excitation

Example 5.3.1. in BO gives an example of a two-dimensional linear system with stochastic
excitation. Such equations may be written in the general form

dX, = (AX, +h (1)) dt + K (t) dB,, (28)

where Xy, h () € R*, B,e R™, A € R™" and K (t) € R"™. As usual, the integrating
factor is the matrix exponential, e=4*. If we introduce

Y; = e AX,, (29)

Ito’s formula gives
dY, = —Ae A'X,dt + e AdX,, (30)

¢t we are left with

and after multiplying Eqn. 28 by e
dY, = e h(t)dt + e K (t) dBy, (31)

from which it follows that

t t
X, = eMX,, + / eAU=9h (s) ds + / eAU=9IK (s) dB,. (32)
0 0

1.3 Note

Some other equations which are solvable using an integrating factor is discussed in the
exercises of Chapter 5 in BQ.



