MA8109 Stokastiske prosesser i systemteori (Stochastic Differential Equations)
 Autumn 2011
 Exam Questions with Solutions

December 2, 2011

Problem 1

(a) Define the standard one-dimensional Brownian motion B_{t} starting at $x=0$, and compute $\mathrm{E}\left(B_{t}^{2}\right)$ and $\operatorname{Var}\left(B_{t}^{2}\right)$.

Let \mathcal{P} be a partition of the interval $[0, t]$ so that $0=t_{0}<t_{1}<\cdots<t_{n}=t, \Delta_{k}=t_{k+1}-$ t_{k}, and $\Delta B_{k}=B_{t_{k+1}}-B_{t_{k}}$. Consider the process Y_{t} defined by $Y_{t}=\lim _{\mathcal{P} \rightarrow 0} \sum_{\mathcal{P}}\left(\Delta B_{k}\right)^{2}$ (limit in $\left.L^{2}(\Omega)\right)$.
(b) Show that $Y_{t}=t$ a.s. (e.g. by computing $\mathrm{E} Y_{t}$ and Y_{t}).

Solution:

(a) The axioms:

$$
\begin{align*}
& \text { (i) } B_{t} \text { is a Gaussian process for } t \geq 0 \text {, starting } x=0 \text {, } \\
& \text { (ii) } \mathrm{E} B_{t}=0, \tag{1}\\
& \text { (iii) } \operatorname{Cov}\left(B_{t}, B_{s}\right)=\min (s, t)
\end{align*}
$$

By applying the axioms and the formula for $\mathrm{E} B_{t}^{4}$ in the table, we have

$$
\begin{align*}
\mathrm{E}\left(B_{t}^{2}\right) & =\operatorname{Var}\left(B_{t}\right)=t \tag{2}\\
\operatorname{Var}\left(B_{t}^{2}\right) & =\mathrm{E}\left(B_{t}^{2}-t\right)^{2}=\mathrm{E}\left(B_{t}^{4}-2 t B_{t}^{2}+t^{2}\right)=3 t^{2}-2 t \times t+t^{2}=2 t^{2} \tag{3}
\end{align*}
$$

(b) We first observe that

$$
\begin{equation*}
\mathrm{E}\left(\sum_{\mathcal{P}}\left(\Delta B_{k}\right)^{2}\right)=\sum_{\mathcal{P}} \mathrm{E}\left(\Delta B_{k}\right)^{2}=\sum_{\mathcal{P}} \Delta_{k}=t \tag{4}
\end{equation*}
$$

for all partitions, and therefore, $\mathrm{E} Y_{t}=t$. Moreover, since ΔB_{k} and ΔB_{l} are independent for $k \neq l$,

$$
\begin{align*}
\operatorname{Var}\left(\sum_{\mathcal{P}}\left(\Delta B_{k}\right)^{2}\right) & =\sum_{\mathcal{P}} \operatorname{Var}\left(\left(\Delta B_{k}\right)^{2}\right)=\sum_{\mathcal{P}} 2 \Delta_{k}^{2} \\
& \leq 2 \max \left|\Delta_{k}\right| \sum_{\mathcal{P}} \Delta_{k}=2 \max \left|\Delta_{k}\right| t \underset{\mathcal{P} \rightarrow 0}{\longrightarrow} 0 \tag{5}
\end{align*}
$$

Hence $\operatorname{Var} Y_{t}=0$, and Y_{t} is equal to t a.s.

Alternatively, we could write, applying that independence implies orthogonality in $L^{2}(\Omega)$:

$$
\begin{aligned}
\left\|\sum_{\mathcal{P}}\left(\Delta B_{k}\right)^{2}-t\right\|_{L^{2}(\Omega)}^{2} & =\sum_{\mathcal{P}} \mathrm{E}\left(\left(\Delta B_{k}\right)^{2}-\Delta_{k}\right)^{2} \\
& =\sum_{\mathcal{P}} 2 \Delta_{k}^{2} \leq 2 \max \left|\Delta_{k}\right| t \underset{\mathcal{P} \rightarrow 0}{\longrightarrow} 0
\end{aligned}
$$

Problem 2

Show that $B_{t}^{2} / t \in \mathcal{V}[0, T], T<\infty$, and state the expectation and variance of

$$
\begin{equation*}
I=\int_{0}^{T} \frac{B_{t}^{2}}{t} d B_{t} \tag{6}
\end{equation*}
$$

Solution:

The function B_{t}^{2} / t is clearly \mathcal{F}_{t}-adapted (and $[0, T] \times \Omega$ measurable). Moreover,

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left|\frac{B_{t}^{2}}{t}\right|^{2} d P(\omega) d t=\int_{0}^{T} \frac{3 t^{2}}{t^{2}} d t=3 T<\infty \tag{7}
\end{equation*}
$$

showing that $B_{t}^{2} / t \in \mathcal{V}[0, T]$.
We have $\mathrm{E} I=0$ for all Itô Integrals, whereas Var I is equal to the integral in Eq. 7 by the Itô Isometry.

Problem 3

Assume that the regular (non-random) function θ_{t} is in $L^{2}[0, T]$, and consider the onedimensional Itô process

$$
\begin{equation*}
X_{t}=-\int_{0}^{t} \frac{\theta_{s}^{2}}{2} d s+\int_{0}^{t} \theta_{s} d B_{s}, t \in[0, T] \tag{8}
\end{equation*}
$$

Let $M_{t}=\exp X_{t}$.
(a) Compute the mean and variance of M_{t} by observing that $Y_{t}=\int_{0}^{t} \theta_{s} d B_{s}$ is Gaussian.
(b) Derive the stochastic differential equation for M_{t} and explain why M_{t} should be a Martingale.
(c) Verify from the definition of a Martingale that M_{t} is an $L^{2}(\Omega)$-Martingale with respect to \mathcal{F}_{t} (The filtration of the Brownian motion).

Solution:

(a) We first observe that $\mathrm{E} Y_{t}=0$ and $\operatorname{Var} Y_{t}=\int_{0}^{t} \theta_{s}^{2} d s$ (Itô Isometry). Then, since

$$
\begin{equation*}
M_{t}=\exp \left(-\int_{0}^{t} \frac{\theta_{s}^{2}}{2} d s\right) \times \exp Y_{t} \tag{9}
\end{equation*}
$$

and using the formula in the list for $e^{Y_{t}}$:

$$
\begin{align*}
\mathrm{E} M_{t} & =\exp \left(-\int_{0}^{t} \frac{\theta_{s}^{2}}{2} d s\right) \times \exp \left(\frac{1}{2} \operatorname{Var} Y_{t}\right)=1 \\
\operatorname{Var} M_{t} & =\mathrm{E} M_{t}^{2}-1=\exp \left(-\int_{0}^{t} \theta_{s}^{2} d s\right) \exp \left(\frac{1}{2} \operatorname{Var}\left(2 Y_{t}\right)\right)-1=\exp \left(\int_{0}^{t} \theta_{s}^{2} d s\right)-1 \tag{10}
\end{align*}
$$

(b) We apply Itô's Formula:

$$
\begin{align*}
d M_{t} & =\left(\exp X_{t}\right) d X_{t}+\frac{1}{2}\left(\exp X_{t}\right)\left(d X_{t}\right)^{2} \\
& =M_{t}\left(-\frac{\theta_{t}^{2}}{2} d t+\theta_{t} d B_{t}\right)+\frac{1}{2} M_{t} \theta_{t}^{2} d t=M_{t} \theta_{t} d B_{t} \tag{11}
\end{align*}
$$

Hence,

$$
\begin{equation*}
M_{t}-M_{0}=\int_{0}^{t} M_{s} \theta_{s} d B_{s} \tag{12}
\end{equation*}
$$

The Itô integral is an \mathcal{F}_{t}-martingale w.r.t. its upper limit, and so is therefore M_{t} (in addition, M_{t} is also an martingale with respect to its own filtration).
(c)

1. Since θ_{t} is a regular deterministic function, X_{t} is clearly \mathcal{F}_{t}-measurable, and so is therefore also $M_{t}=\exp X_{t}$.
2. Since $\operatorname{Var} M_{t}$ is finite, $M_{t} \in L^{2}(\Omega) \subset L^{1}(\Omega)$.
3. For $0 \leq t<s \leq T$ we have:

$$
\begin{align*}
\mathrm{E}\left(M_{s} \mid \mathcal{F}_{t}\right) & =\mathrm{E}\left(\left.\exp \left(\int_{0}^{s}-\frac{\theta_{u}^{2}}{2} d u+\theta_{u} d B_{u}\right) \right\rvert\, \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left(\left.M_{t} \exp \left(\int_{r}^{s}-\frac{\theta_{u}^{2}}{2} d u+\theta_{u} d B_{u}\right) \right\rvert\, \mathcal{F}_{t}\right) \\
& =M_{t} \mathrm{E}\left(\exp \int_{r}^{s}\left\{-\frac{\theta_{u}^{2}}{2} d u+\theta_{u} d B_{u}\right\}\right) \\
& =M_{t} \tag{13}
\end{align*}
$$

The last equalities follow since M_{t} is \mathcal{F}_{t}-measurable, whereas $\exp \int_{t}^{s}\left\{-\frac{\theta_{u}^{2}}{2} d u+\theta_{u} d B_{u}\right\}$ is independent of \mathcal{F}_{t}.

Problem 4

Consider the stochastic process $X_{t}=\log \left(B_{t}\right), X_{0}=0\left(B_{0}=1\right)$. Write X_{t} as an autonome Itô diffusion. Does this differential equation satisfy the sufficient conditions for existence of solutions on an interval $[0, T]$?

Solution:

Clearly, since nothing prevents B_{t} from becoming negative, there will always be a fraction of the paths of X_{t} blowing up for a $t \in(0, T]$, regardless the size of $T>0$.

The equation for X_{t} follows from Itô's Formula:

$$
\begin{equation*}
d X_{t}=\frac{1}{B_{t}} d B_{t}-\frac{1}{B_{t}^{2}} d t=-e^{-2 X_{t}} d t+e^{-X_{t}} d B_{t} \tag{14}
\end{equation*}
$$

For large negative values of X_{t} (which may well occur), no bound like

$$
\begin{equation*}
\left|e^{-x}\right| \leq C(1+|x|) \tag{15}
\end{equation*}
$$

will work (B.Ø. Thm. 5.2.1).

Problem 5

Solve the equation

$$
\begin{equation*}
d X_{t}=-2 t X_{t} d t+e^{-t^{2}} B_{t} d B_{t}, X_{0}=1, t \geq 0 \tag{16}
\end{equation*}
$$

Solution:

We multiply through with $h(t)$ and replace $h(t) d X_{t}$ by $d\left[h(t) X_{t}\right]-h^{\prime}(t) X_{t} d t$:

$$
\begin{equation*}
d\left[h(t) X_{t}\right]-h^{\prime}(t) X_{t} d t=-h(t) 2 t X_{t} d t+h(t) e^{-t^{2}} B_{t} d B_{t} \tag{17}
\end{equation*}
$$

The smart choice is clearly

$$
\begin{equation*}
h^{\prime}(t)=2 t h(t), \tag{18}
\end{equation*}
$$

with a solution $h(t)=e^{t^{2}}$. The equation is now reduced to

$$
\begin{equation*}
d\left(e^{t^{2}} X_{t}\right)=B_{t} d B_{t} \tag{19}
\end{equation*}
$$

which may be integrated to

$$
\begin{equation*}
e^{t^{2}} X_{t}=X_{0}+\int_{0}^{t} B_{s} d B_{s} \tag{20}
\end{equation*}
$$

The Itô integral is solvable by observing that with $Y_{t}=B_{t}^{2}$, we obtain from Itô's Formula

$$
\begin{equation*}
d Y_{t}=2 B_{t} d B_{t}+\frac{1}{2} 2 d t \tag{21}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(Y_{t}-Y_{0}\right)-\int_{0}^{t} d s=\frac{B_{t}^{2}}{2}-\frac{t}{2} \tag{22}
\end{equation*}
$$

and finally, with $X_{0}=1$,

$$
\begin{equation*}
X_{t}=e^{-t^{2}}\left(1+\int_{0}^{t} B_{s} d B_{s}\right)=e^{-t^{2}}\left(1+\frac{1}{2}\left(B_{t}^{2}-t\right)\right) \tag{23}
\end{equation*}
$$

Problem 6

(a) Dynkin's Formula may be stated

$$
\begin{equation*}
\mathrm{E}^{x} f\left(X_{\tau}\right)=f(x)+\mathrm{E}^{x} \int_{0}^{\tau} A f\left(X_{s}\right) d s \tag{24}
\end{equation*}
$$

Explain the terms in the formula and how it is applied for solving the equation $A f=0$.
For (b) and (c) we assume known that the average first exit time for Brownian motion is finite for all bounded domains.
(b) Consider a domain in \mathbb{R}^{2} bounded by two concentric circles,

$$
\begin{equation*}
U=\left\{x \in \mathbb{R}^{2} ; 0<r<|x|<R<\infty\right\} . \tag{25}
\end{equation*}
$$

A Brownian motion starts at $x \in U$. Compute the expectation of the exit time τ_{U}^{x} and the probabilities that the Brownian motion first exits through the inner and outer circle, respectively ($\mathrm{E} \tau_{U}^{x}$ is finite for all finite domains). What happens if we let $R \rightarrow \infty$?
(c) Consider a Brownian motion in $\mathbb{R}^{n}, n \geq 3$, starting at x and let S be a sphere with radius $R>0$ not containing x. Compute the average of the first hitting time of the sphere.

Solution

(a)

- τ is a stopping time where we know that $\mathrm{E}^{x} \tau<\infty$ at all x-s we need.
- X_{t} is an Itô Diffusion, $d X_{t}=\beta_{i}\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$, where β and σ fulfill the conditions in B.Ø. Thm. 5.2.1.
- A is the generator for the diffusion (stated in the formula list).
- $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$.

If we are seeking a solution $A f(x)=0$ at x in a set U, we let τ_{U}^{x} be the first exit time from U and consider

$$
\begin{equation*}
f(x)=\mathrm{E}^{x} f\left(X_{\tau_{U}}\right) \tag{26}
\end{equation*}
$$

to be a candidate for the solution at x. This is true for "nice" problems.
(b) The generator for the Brownian motion is $A=\frac{1}{2} \nabla^{2}$. Let p_{R} be the probability that B_{t}^{x} exits for the first time through the outer circle (and $p_{r}=1-p_{R}$ for first exit through the inner circle). We apply Dynkin Formula with functions which are equal to $f_{1}(x)=\log |x|$ and $f_{2}(x)=|x|^{2}$ for $x \in U$. Outside U we assume that the functions are adjusted so that they belong to $C_{0}^{2}\left(\mathbb{R}^{2}\right)$ (or even $C_{c}^{2}\left(\mathbb{R}^{2}\right)$).

Since $A f_{1}(x) \equiv 0$ in U, we have

$$
\begin{equation*}
\mathrm{E}^{x} f_{1}\left(X_{\tau}\right)=p_{R} \log R+\left(1-p_{R}\right) \log r=\log |x| \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
p_{R} & =\frac{\log |x|-\log r}{\log R-\log r} \tag{28}\\
p_{r} & =1-p_{R}=\frac{\log R-\log |x|}{\log R-\log r} \tag{29}
\end{align*}
$$

We then apply f_{2}, and observe first that

$$
\begin{equation*}
A f_{2}(x)=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)\left(x_{1}^{2}+x_{2}^{2}\right)=2 \tag{30}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{E}^{x} f_{2}\left(X_{\tau}\right)=p_{R} R^{2}+\left(1-p_{R}\right) r^{2}=|x|^{2}+2 \times \mathrm{E}^{x} \tau_{U} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}^{x} \tau_{U}=\left[p_{R} R^{2}+\left(1-p_{R}\right) r^{2}-|x|^{2}\right] / 2 \tag{32}
\end{equation*}
$$

(A direct proof that the right hand side is indeed larger than 0 for $r<|x|<R$ is left to the reader!). When $R \rightarrow \infty$, then $p_{r} \rightarrow 1$ and $p_{R} \rightarrow 0$. However, it is clear that $\mathrm{E}^{x} \tau_{U} \rightarrow \infty$, since $p_{R} R^{2} \sim R^{2} / \log R \underset{R \rightarrow \infty}{\rightarrow} \infty$.
(c) This point starts similar to (b), applying $f_{1}(x)=|x|^{2-n}$:

$$
\begin{equation*}
p_{R} R^{2-n}+\left(1-p_{R}\right) r^{2-n}=|x|^{2-n} \tag{33}
\end{equation*}
$$

Thus,

$$
\begin{align*}
p_{R} & =\frac{|x|^{-n+2}-r^{2-n}}{R^{-n+2}-r^{2-n}} \\
p_{r} & =\frac{R^{2-n}-|x|^{2-n}}{R^{2-n}-r^{2-n}} \tag{34}
\end{align*}
$$

Since $R^{-n+2} \rightarrow 0$ when $R \rightarrow \infty$, we have

$$
\begin{align*}
\lim _{R \rightarrow \infty} p_{r} & =\left(\frac{r}{|x|}\right)^{n-2} \\
\lim _{R \rightarrow \infty} p_{R} & =1-(r /|x|)^{n-2} \tag{35}
\end{align*}
$$

The first hitting time of the inner sphere is thus ∞ for a strictly positive fraction, $1-$ $(r /|x|)^{n-2}$, of the paths (which never hit S). This implies that $\mathrm{E} \tau_{S}^{x}$ must be infinite.

List of useful formulae

Note: The list does not state requirements for the formulae to be valid.
1D Gaussian variable $X \in \mathcal{N}\left(\mu, \sigma^{2}\right)$;

$$
\begin{align*}
\mathrm{E}(X-\mu)^{4} & =3 \sigma^{4} \tag{36}\\
\mathrm{E}\left(e^{X-\mu}\right) & =e^{\frac{\sigma^{2}}{2}} . \tag{37}
\end{align*}
$$

Two formulae for Conditional Expectations:

(i) If Y is \mathcal{H}-measurable, then $\mathrm{E}(Y X \mid \mathcal{H})=Y \mathrm{E}(X \mid \mathcal{H})$.
(ii) If X is independent of \mathcal{H}, then $\mathrm{E}(X \mid \mathcal{H})=\mathrm{E}(X)$.

The Itô Isometry:

$$
\begin{equation*}
\mathrm{E}\left|\int_{0}^{T} f(t, \omega) d B_{t}(\omega)\right|^{2}=\int_{0}^{T} \mathrm{E}|f(t, \omega)|^{2} d t=\|f\|_{L^{2}(\Omega \times[0, T])}^{2} \tag{39}
\end{equation*}
$$

Itô Formula:

$$
\begin{equation*}
d g\left(t, X_{t}, Y_{t}\right)=\frac{\partial g}{\partial t} d t+\frac{\partial g}{\partial x} d X_{t}+\frac{\partial g}{\partial y} d Y_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(d X_{t}\right)^{2}+\frac{\partial^{2} g}{\partial x \partial y} d X_{t} d Y_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial y^{2}}\left(d Y_{t}\right)^{2} . \tag{40}
\end{equation*}
$$

and Rules.
The Generator for $d X_{t}=\beta_{i}\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$:

$$
\begin{equation*}
A(f)(x)=\sum_{i=1}^{n} \beta_{i}(x) \frac{\partial f}{\partial x_{i}}(x)+\frac{1}{2} \sum_{i, j=1}^{n}\left(\sigma(x) \sigma(x)^{\prime}\right)_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \tag{41}
\end{equation*}
$$

Potential Solutions:

$$
\begin{align*}
\nabla^{2} f & =0 \text { for all } x \in \mathbb{R}^{n},|x| \neq 0 \\
n & =2: \quad f(x)=\log (|x|) \\
n & >2: \quad f(x)=|x|^{2-n} \tag{42}
\end{align*}
$$

