MA 8101 Stokastiske metoder i systemteori
 AUTUMN TERM 2003

Suggested solution with some extra comments

The exam had a list of useful formulae attached. This list has been added here as well.

1 Problem

In this problem we are considering a standard Brownian motion B_{t} in \mathbb{R}^{1} starting at 0 .
(a) State the basic properties of the Brownian motion. Define, for a fixed $a>0$, the process

$$
\begin{equation*}
X_{t}=a B_{t / a^{2}} \tag{1}
\end{equation*}
$$

Verify that also X_{t} is a standard Brownian motion.
A standard Brownian motion starting at 0 is a Gaussian stochastic process defined for $t \in$ $[0, \infty)$ fulfilling

1. $\mathrm{E} B_{t}=0$,
2. $\operatorname{Cov}\left(B_{t} B_{s}\right)=\min (t, s)$.

From (2) it follows that a B.M. has orthogonal increments. There exists a version of B.M. with continuous paths.
It is obvious that X_{t} is a Gaussian process (This actually requires that all finite collections $\left(X_{t_{1}}, \cdots, X_{t_{N}}\right)$ are multivariate Gaussian, but this follows since B_{t} has such a property). Moreover, 1. clearly true. Finally,

$$
\begin{align*}
\operatorname{Cov}\left(X_{t}, X_{s}\right) & =a^{2} \operatorname{Cov}\left(B_{s / a^{2}} B_{t / a^{2}}\right) \\
& =a^{2} \times \min \left(\frac{s}{a^{2}}, \frac{t}{a^{2}}\right) \tag{2}\\
& =\min (s, t)
\end{align*}
$$

(b) Let $0=t_{0}<t_{1}<\cdots<t_{N+1}=T$ be a partition of the interval $[0, T]$ and φ the elementary function

$$
\begin{equation*}
\varphi(t, \omega)=\sum_{j=0}^{N} e_{j}(\omega) \chi_{\left[t_{j+1}-t_{j}\right)}(t) \tag{3}
\end{equation*}
$$

What does it mean that φ is in the class $\mathcal{V}[0, T]$, and what is then the value of the Ito integral

$$
\begin{equation*}
\int_{0}^{T} \varphi(t, \omega) d B_{t}(\omega) ? \tag{4}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\mathrm{E}\left(\int_{0}^{T} f(t, \omega) d B_{t}(\omega)\right)=0 \tag{5}
\end{equation*}
$$

for all $f \in \mathcal{V}[0, T]$.

The class $\mathcal{V}[0, T]$ consists of $\mathcal{B} \times \mathcal{F}$-measurable functions $f(t, \omega) \in L^{2}(\Omega \times[0, T])$ such that $f(t, \omega)$ is \mathcal{F}_{t}-measurable for all $t \in[0, T]$. Here this will be the case if $\mathrm{E}\left(e_{j}^{2}\right)<\infty$ and e_{j} is $\mathcal{F}_{t_{j}}$-measurable for all $j=0, \cdots, N$. Also,

$$
\begin{equation*}
\int_{0}^{T} \varphi(t, \omega) d B_{t}(\omega)=\sum_{j=0}^{N} e_{j}(\omega)\left[B_{t_{j+1}}(\omega)-B_{t_{j}}(\omega)\right] \tag{6}
\end{equation*}
$$

Since e_{j} and $B_{t_{j+1}}-B_{t_{j}}$ are independent,

$$
\begin{equation*}
\mathrm{E}\left(e_{j}\left[B_{t_{j+1}}-B_{t_{j}}\right]\right)=\mathrm{E}\left(e_{j}\right) \mathrm{E}\left(B_{t_{j+1}}-B_{t_{j}}\right)=0 . \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathrm{E}\left(\int_{0}^{T} \varphi(t, \omega) d B_{t}(\omega)\right)=0 \tag{8}
\end{equation*}
$$

In general, the Itô integral is a limit of integrals of simple functions. This is about all we requite for the exam, but the full argument is as follows: We find a sequence $\left\{\varphi_{n}\right\}$ such that $\mathrm{E}\left(\left|\int \varphi_{n} d B-\int f d B\right|^{2}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. Then

$$
\begin{align*}
\left|\mathrm{E}\left(\int f d B\right)\right| & = \\
\left|\mathrm{E}\left(\int \varphi_{n} d B\right)-\mathrm{E}\left(\int f d B\right)\right| & =\left|\mathrm{E} \int\left(\varphi_{n}-f\right) d B\right| \\
& \leq \mathrm{E}\left|\int\left(\varphi_{n}-f\right) d B\right| \tag{9}\\
& \leq\left(\mathrm{E}\left(\left|\int\left(\varphi_{n}-f\right) d B\right|^{2}\right)\right)^{1 / 2} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
\end{align*}
$$

(c) Compute the variance of the integral

$$
\begin{equation*}
\int_{0}^{1} t B_{t}(\omega) d B_{t}(\omega) \tag{10}
\end{equation*}
$$

This follows immediately from Itô's Isometry since we know that the expectation is 0 :

$$
\begin{align*}
\operatorname{Var}\left(\int_{0}^{1} t B_{t}(\omega) d B_{t}(\omega)\right) & =\mathrm{E}\left(\int_{0}^{1} t B_{t}(\omega) d B_{t}(\omega)\right)^{2} \\
& =\int_{0}^{1} \mathrm{E}\left(t B_{t}\right)^{2} d t=\int_{0}^{1} t^{2} \cdot t d t=\frac{1}{4} \tag{11}
\end{align*}
$$

2 Problem

We consider two Itô processes X_{t} and Y_{t} on R^{1}.
(a) Let X_{t} and Y_{t} be two Itô processes X_{t} and Y_{t} on \mathbb{R}^{1}. Prove that

$$
\begin{equation*}
d\left(X_{t} Y_{t}\right)=X_{t} d Y_{t}+Y_{t} d X_{t}+d X_{t} d Y_{t} \tag{12}
\end{equation*}
$$

For this formula we apply the 2D Itô formula for the function $g(x, y)=x y$.Then

$$
\begin{align*}
d\left(X_{t} Y_{t}\right) & =\frac{\partial g}{\partial x} d X_{t}+\frac{\partial g}{\partial y} d Y_{t}+\frac{\partial^{2} g}{\partial x \partial y} d X_{t} \cdot d Y_{t} \\
& =Y_{t} d X_{t}+X_{t} d Y_{t}+1 \cdot d X_{t} \cdot d Y_{t} . \tag{13}
\end{align*}
$$

(b) Let

$$
\begin{equation*}
X_{t}=e^{t / 2} \sin \left(B_{t}\right) . \tag{14}
\end{equation*}
$$

Show that X_{t} can be written as an Itô integral.
We compute $d X_{t}$ using Ito's formula:

$$
\begin{align*}
d X_{t} & =\frac{1}{2} X_{t} d t+e^{t / 2} \cos \left(B_{t}\right) d B_{t}+\frac{1}{2} e^{t / 2}\left(-\sin B_{t}\right) d t \\
& =e^{t / 2} \cos \left(B_{t}\right) d B_{t} . \tag{15}
\end{align*}
$$

Hence,

$$
\begin{equation*}
X_{t}=\int_{0}^{t} e^{s / 2} \cos \left(B_{s}\right) d B_{s} \tag{16}
\end{equation*}
$$

since it is clear that $e^{t / 2} \cos \left(B_{t}\right) \in \mathcal{V}[0, T]$.
(c) The conclusion in (2.b) implies that X_{t} is a Martingale with respect to the filtration of the Brownian motion, \mathcal{F}_{t}. Prove this directly by applying the definition of a Martingale to the expression for X_{t} in Eqn. 14.
The first is to observe that

$$
\begin{equation*}
\mathrm{E}\left(X_{t}\right) \leq \mathrm{E}\left(\left|X_{t}\right|\right)=\mathrm{E}\left(e^{t / 2}\left|\sin \left(B_{t}\right)\right|\right) \leq e^{t / 2}<\infty . \tag{17}
\end{equation*}
$$

Since X_{t} is a determininistic, continuous function of B_{t}, X_{t} is clearly \mathcal{F}_{t}-measureable.
We finally need to show that $\mathrm{E}\left(X_{t+\Delta t} \mid \mathcal{F}_{t}\right)=X_{t}$ for $\Delta t>0$. Let us write $B_{t+\Delta t}=B_{t}+\Delta B$. Then

$$
\begin{align*}
& \mathrm{E}\left(X_{t+\Delta t} \mid \mathcal{F}_{t}\right) \\
& =\mathrm{E}\left(e^{(t+\Delta t) / 2} \sin \left(B_{t}+\Delta B\right) \mid \mathcal{F}_{t}\right) \\
& =e^{(t+\Delta t) / 2} \mathrm{E}\left(\sin \left(B_{t}\right) \cos (\Delta B)+\cos \left(B_{t}\right) \sin (\Delta B) \mid \mathcal{F}_{t}\right) \\
& \stackrel{(i)}{=} e^{(t+\Delta t) / 2}\left[\sin \left(B_{t}\right) \mathrm{E}\left(\cos (\Delta B) \mid \mathcal{F}_{t}\right)+\cos \left(B_{t}\right) \mathrm{E}\left(\sin (\Delta B) \mid \mathcal{F}_{t}\right)\right] \\
& \stackrel{(i i)}{=} e^{(t+\Delta t) / 2}\left[\sin \left(B_{t}\right) \mathrm{E}(\cos (\Delta B))+\cos \left(B_{t}\right) \mathrm{E}(\sin (\Delta B))\right] \tag{18}\\
& \stackrel{(i i i)}{=} e^{(t+\Delta t) / 2}\left[\sin \left(B_{t}\right) e^{-\Delta t / 2}+0\right] \\
& =e^{t / 2} \sin \left(B_{t}\right)=X_{t}
\end{align*}
$$

Here (i) and (ii) are formulae for the conditional expectation. Moreover, for $(i i i), \mathrm{E}(\cos (\Delta B))$ is listed and $\mathrm{E}(\sin (\Delta B))$ is obviously 0 .

3 Problem

(a) Show that a linear stochastic differential equation

$$
\begin{equation*}
d X_{t}=p(t) X_{t} d t+q(t) d B_{t} \tag{19}
\end{equation*}
$$

may be solved by an integrating factor $h(t)$ such that

$$
\begin{equation*}
d\left[h(t) X_{t}\right]=h(t) q(t) d B_{t} \tag{20}
\end{equation*}
$$

It follows from Itô's formula that

$$
\begin{equation*}
d\left(h(t) X_{t}\right)=h^{\prime}(t) X_{t} d t+h(t) d X_{t} \tag{21}
\end{equation*}
$$

We then multiply Eqn. 19 by $h(t)$:

$$
\begin{equation*}
h(t) d X_{t}=d\left(h(t) X_{t}\right)-h^{\prime}(t) X_{t} d t=h(t) p(t) X_{t} d t+h(t) q(t) d B_{t} \tag{22}
\end{equation*}
$$

The stated form follows if we find h such that

$$
\begin{equation*}
-h^{\prime}(t)=h(t) p(t) \tag{23}
\end{equation*}
$$

Then the solution to Eqn. 19 is:

$$
\begin{equation*}
h(t) X_{t}-h\left(t_{0}\right) X_{t_{0}}=\int_{t_{0}}^{t} h(t) q(t) d B_{t} \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
X_{t}=\frac{h\left(t_{0}\right) X_{t_{0}}+\int_{t_{0}}^{t} h(t) q(t) d B_{t}}{h(t)} \tag{25}
\end{equation*}
$$

(b) Apply the method in (a) to solve the equation

$$
\begin{equation*}
d X_{t}=\frac{1}{t} X_{t} d t+t d B_{t}, t \geq 1, \quad X_{1}=1 \tag{26}
\end{equation*}
$$

The function h has to satisfy the equation

$$
\begin{equation*}
h^{\prime}+\frac{1}{t} h=0 \tag{27}
\end{equation*}
$$

that is, $h(t)=t^{-1}$. In this case the start is at $t=1$ such that

$$
\begin{equation*}
X_{t}=\frac{X_{1}+\int_{1}^{t} \frac{1}{s} s d B_{s}}{1 / t}=t\left(1+B_{t}-B_{1}\right)=t \tilde{B}_{t}^{1,1}, t \geq 1 \tag{28}
\end{equation*}
$$

4 Problem

Consider the following geometric Brownian motion in $\mathbb{R}^{1}: X_{t}=x \exp \left(-t+B_{t}\right), 0 \leq t$.
(a) Show that X_{t} is an Itô diffusion with generator

$$
\begin{equation*}
A=-\frac{x}{2} \frac{d}{d x}+\frac{x^{2}}{2} \frac{d^{2}}{d x^{2}} \tag{29}
\end{equation*}
$$

The diffusion representation of X_{t} is

$$
\begin{align*}
d X_{t} & =-X_{t} d t+X_{t} d B_{t}+\frac{1}{2} X_{t} d t \\
& =-\frac{X_{t}}{2} d t+X_{t} d B_{t} \tag{30}
\end{align*}
$$

The formula for the generator follows from

$$
\begin{equation*}
A=\beta \frac{d}{d x}+\frac{1}{2} \sigma^{2} \frac{d^{2}}{d x^{2}}, \tag{31}
\end{equation*}
$$

when $d X_{t}=\beta d t+\sigma d B_{t}$.
(b) We start X_{t} at $x=1$ and define, for $x_{0}<1$,

$$
\begin{equation*}
\tau_{0}(\omega)=\min \left\{t ; \quad X_{t}(\omega) \leq x_{0}\right\} . \tag{32}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\mathrm{E} \tau_{0}=-\log x_{0} \tag{33}
\end{equation*}
$$

We are going to apply Dynkin's Formula and need to know that $E \tau_{0}<\infty$. Here the part E^{-t} will effectively "kill" the Brownian motion part $\mathrm{E}^{B_{t}}$. Of course, X_{t} will also cross the level x_{0} a.s. This argument is sufficient for the exam, but the full proof could be based on the law of the iterated logarithm, or the following simple estimate:

$$
\begin{align*}
P\left(\tau_{0} \geq u\right) & \leq P\left(X_{u} \geq x_{0}\right) \\
& =P\left(B_{u} \geq \log x_{0}+u\right) \\
& =P\left(\frac{B_{u}}{u^{1 / 2}} \geq \frac{\log x_{0}+u}{u^{1 / 2}}\right) \tag{34}\\
& =O\left(u^{-1 / 2} e^{-u}\right),
\end{align*}
$$

when $u \rightarrow \infty$; using the inequality in the list. This is sufficient for $E \tau_{0}$ to be finite.
The next step is to find an f such that $A f$ is equal to a constant. Here $f(x)=\log x$ will do since

$$
\begin{equation*}
-\frac{x}{2} \frac{d \log x}{d x}+\frac{x^{2}}{2} \frac{d^{2} \log x}{d x^{2}}=-1 . \tag{35}
\end{equation*}
$$

By Dynkin's Formula we then have

$$
\begin{align*}
\mathrm{E}^{1}\left(f\left(X_{\tau}\right)\right) & =\log \left(x_{0}\right)=\log 1+\mathrm{E}^{1}\left(\int_{0}^{\tau_{0}}(-1) d s\right) \\
& =-\mathrm{E} \tau_{0}, \tag{36}
\end{align*}
$$

or

$$
\begin{equation*}
\mathrm{E} \tau_{0}=-\log \left(x_{0}\right) \tag{37}
\end{equation*}
$$

(c) Let a, b be two positive numbers, $a<b$. We start X_{t} at $x \in[a, b]$ and let

$$
p=\operatorname{Pr}\left(X_{t} \text { hits level } b \text { before it hits level } a\right)
$$

Determine p for all $x \in[a, b]$.

We need to find a function $f(x)$ such that $A f=0$, and try x^{γ} :

$$
\begin{equation*}
-\frac{x}{2} \frac{d x^{\gamma}}{d x}+\frac{x^{2}}{2} \frac{d^{2} x^{\gamma}}{d x^{2}}=x^{\gamma}\left(-\frac{\gamma}{2}+\frac{1}{2} \gamma(\gamma-1)\right)=0 \tag{38}
\end{equation*}
$$

for $\gamma=2$. We then apply Dynkin's formula with the function $f(x)=x^{\gamma}, \gamma=2$. The expected escape time from the interval $[a, b]$ is clearly finite since the situation will be similar to the case in (b) for the lower level a. Thus

$$
\begin{equation*}
\mathrm{E}\left(X_{\tau}^{\gamma}\right)=p \cdot b^{\gamma}+(1-p) \cdot a^{\gamma}=x^{\gamma}+0, \tag{39}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
p=\frac{x^{\gamma}-a^{\gamma}}{b^{\gamma}-a^{\gamma}} . \tag{40}
\end{equation*}
$$

A list of useful formulae

Note: The list does not state requirements for the formulae to be valid.
The probability density of a 1D Gaussian variable with mean μ and variance σ^{2} :

$$
\begin{equation*}
\phi(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{41}
\end{equation*}
$$

A definite integral:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \cos (x) \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x=\sqrt{2 \pi} \sigma e^{-\sigma^{2} / 2} \tag{42}
\end{equation*}
$$

An inequality:

Let X be $\mathcal{N}(0,1)$ and $x>0$. Then

$$
\begin{equation*}
P(X \geq x) \leq \sqrt{\frac{1}{2 \pi}} \frac{1}{x} e^{-x^{2} / 2} \tag{43}
\end{equation*}
$$

Two formulae for Conditional Expectations:

(i) If Y is \mathcal{H}-measurable, then $\mathrm{E}(X Y \mid \mathcal{H})=Y \mathrm{E}(X \mid \mathcal{H})$.
(ii) If X is independent of \mathcal{H}, then $\mathrm{E}(X \mid \mathcal{H})=\mathrm{E}(X)$.

The Itô isometry:

$$
\begin{equation*}
\mathrm{E}\left|\int_{0}^{T} f(t, \omega) d B_{t}(\omega)\right|^{2}=\int_{0}^{T}\left(\mathrm{E}|f(t, \omega)|^{2}\right) d t=\|f\|_{L^{2}(\Omega \times[0, T])}^{2} \tag{44}
\end{equation*}
$$

Itô's 2D formula:

$$
\begin{equation*}
d g\left(t, X_{t}, Y_{t}\right)=\frac{\partial g}{\partial t} d t+\frac{\partial g}{\partial x} d X_{t}+\frac{\partial g}{\partial y} d Y_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(d X_{t}\right)^{2}+\frac{\partial^{2} g}{\partial x \partial y} d X_{t} d Y_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial y^{2}}\left(d Y_{t}\right)^{2} . \tag{45}
\end{equation*}
$$

and "the rules".
The generator:

$$
\begin{equation*}
A(f)(x)=\sum_{i=1}^{n} \beta_{i}(x) \frac{\partial f}{\partial x_{i}}(x)+\frac{1}{2} \sum_{i, j=1}^{n}\left(\sigma(x) \sigma(x)^{\prime}\right)_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) . \tag{46}
\end{equation*}
$$

Dynkin's Formula:

$$
\begin{equation*}
\mathrm{E}^{x}\left(f\left(X_{\tau}\right)\right)=f(x)+\mathrm{E}^{x}\left(\int_{0}^{\tau} A f\left(X_{s}\right) d s\right) . \tag{47}
\end{equation*}
$$

