MA8109 Stokastiske metoder i systemteori
 Autumn 2007
 Suggested solution and extra comments

(Revised version December 10)

1 Problem

Consider the probability space $\{\Omega, \mathcal{F}, P\}$ and three sets $A_{1}, A_{2}, A_{3} \in F$ where $A_{1} \cup A_{2} \cup A_{3}=\Omega$. Moreover, the sets are disjoint ($A_{i} \cap A_{j}=\varnothing$ whenever $i \neq j$), and $P\left(A_{i}\right)>0$ for $i=1,2,3$.
(a) List the sets in the σ-algebra \mathcal{H} generated by A_{1}, A_{2}, and A_{3}.
(b) The function Y from Ω into R is \mathcal{H}-measurable. Show that Y is equal to a constant on each of the sets A_{1}, A_{2}, and A_{3}. (Hint: Consider $\{\omega ; X(\omega)=a\}$)
(c) Using the result from (b), compute the conditional expectation $E(X \mid \mathcal{H})(\omega)$ for an arbitrary stochastic variable X.

Solution:

(a) The definition of a σ-algebra is found in the notes. The σ-algebra \mathcal{H} generated by A_{1}, A_{2}, and A_{3} is the formally smallest σ-algebra containing A_{1}, A_{2} and A_{3}. Using the definition, it is obvious that \mathcal{H} contains $A_{1}, A_{2}, A_{3}, \Omega, \varnothing$, and, in addition the 3 sets $A_{1}^{c}=A_{2} \cup A_{3}$, $A_{2}^{c}=A_{1} \cup A_{3}$, and $A_{3}^{c}=A_{1} \cup A_{2}$.
(b) When Y is \mathcal{H}-measurable, then for all sets B in the Borel algebra of \mathbb{R},

$$
\begin{equation*}
X^{-1}(B)=\{\omega ; X(\omega) \in B\} \in \mathcal{H} \tag{1}
\end{equation*}
$$

Thus, if $X\left(\omega_{1}\right)=a$ for an $\omega_{1} \in A_{1}$, then $\{\omega ; X(\omega)=a\}$ will have to be equal to $A_{1}, A_{1} \cup A_{2}$, $A_{1} \cup A_{3}$, or Ω. In any case, X will have to be constant on A_{1}. The same argument works for A_{2}, and A_{3}.
(c) If we do not differ between functions equal a.s., the conditional expectation $\mathrm{E}(X \mid \mathcal{H})$ will be \mathcal{H}-measurable. From (b), we then know that it is constant on each of the sets A_{1}, A_{2}, and A_{3}, and it remains to determine the constants, say $a_{i}=X(\omega)$ for $\omega \in A_{i}$. Applying the definition, we have for all $H \in \mathcal{H}$,

$$
\begin{equation*}
\int_{H} \mathrm{E}(X \mid \mathcal{H}) d P=\int_{H} X d P \tag{2}
\end{equation*}
$$

Then, using $H=A_{1}, A_{2}$, and A_{3}, we obtain

$$
\begin{equation*}
\int_{A_{i}} a_{i} d P=a_{i} P(A)=\int_{A_{i}} X d P, \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{i}=\frac{\int_{A_{i}} X d P}{P(A)}, i=1,2,3 . \tag{4}
\end{equation*}
$$

2 Problem

(a) Give a brief explanation of an adapted, elementary function, ϕ, and define the corresponding Itô integral,

$$
\begin{equation*}
I(\omega)=\int_{S}^{T} \phi(t, \omega) d B_{t}(\omega) . \tag{5}
\end{equation*}
$$

State the expectation and variance of I.
(b) Compute the expectation and the variance of the Itô integral

$$
\begin{equation*}
\int_{0}^{1}\left(B_{t}^{2}-t\right) d B_{t} \tag{6}
\end{equation*}
$$

(Hint: If X is normal with mean μ and variance σ^{2}, then $E(X-\mu)^{4}=3 \sigma^{4}$)
(c) Let F_{t} be the filtration w.r.t. $1 D$ Brownian motion. Prove that

$$
\begin{equation*}
M_{t}=B_{t}^{2}-t \tag{7}
\end{equation*}
$$

is an F_{t}-Martingale.

Solution:

(a) An adapted function needs first of all a filtration. In the present case, this is the filtration \mathcal{F}_{t} defined by the Brownian motion, that is, \mathcal{F}_{t} is the σ-algebra generated by $\left\{B_{s}\right\}_{0 \leq s \leq t}$. A function adapted to \mathcal{F}_{t} is a random process, say $X(t)$, where $X(t)$ is \mathcal{F}_{t}-measurable for all t-s. An elementary function ϕ is a process that is constant on each set of a partition P of an interval $[S, T]$. The partition consists of all intervals $\left[t_{k}, t_{k+1}\right]$ defined by

$$
\begin{equation*}
S=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=T \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(t, \omega)=\sum_{k=0}^{n-1} e_{k}(\omega) \chi_{\left[t_{k}, t_{k+1}\right)}(t) \tag{9}
\end{equation*}
$$

For ϕ to be \mathcal{F}_{t}-adapted, we need that $e_{k}(\omega)$ is $\mathcal{F}_{t_{k}}$-adapted for each k. In order to be in $\mathcal{V}[S, T]$, we also require that the variance stated below is finite, and a measurability condition (B. $\varnothing . ~ D e f . ~ 3.1 .4) . ~ T h e ~ I t o ̂-i n t e g r a l ~ o f ~ \phi ~ i s ~ d e f i n e d ~ a s ~$

$$
\begin{equation*}
I(\omega)=\int_{S}^{T} \phi(t, \omega) d B_{t}(\omega)=\sum_{k=0}^{n-1} e_{k}(\omega)\left(B_{t_{k+1}}(\omega)-B_{t_{k}}(\omega)\right) . \tag{10}
\end{equation*}
$$

Since $e_{k}(\omega)$ and $\Delta B_{k}=B_{t_{k+1}}-B_{t_{k}}$ are independent, $\mathrm{E} I=0$. Moreover, using the Itô Isometry,

$$
\begin{align*}
\operatorname{Var} I^{2} & =\mathrm{E} I^{2}=\mathrm{E}\left(\int_{S}^{T}|\phi(t, \omega)|^{2} d t\right) \\
& =\int_{S}^{T} \mathrm{E}|\phi(t, \omega)|^{2} d t=\sum_{k=0}^{n-1} \mathrm{E}\left|e_{k}\right|^{2}\left(t_{k+1}-t_{k}\right) \tag{11}
\end{align*}
$$

(This is also easy to see directly using the properties of e_{k} and ΔB_{k}).
(b) This is an Itô-integral since $\left(B_{t}^{2}-t\right)$ is \mathcal{F}_{t}-adapted. Using the Itô Isometry, we first compute

$$
\begin{equation*}
\mathrm{E}\left(B_{t}^{2}-t\right)^{2}=\mathrm{E}\left(B_{t}^{4}-2 t B_{t}^{2}+t^{2}\right)=3 t^{2}-2 t^{2}+t^{2}=2 t^{2} \tag{12}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\operatorname{Var}\left(\int_{0}^{1}\left(B_{t}^{2}-t\right) d B_{t}\right)=\int_{0}^{1} 2 t^{2}=\frac{2}{3} \tag{13}
\end{equation*}
$$

(c) The shortest proof of this is to observe (using Itô's Formula) that

$$
\begin{equation*}
d\left(B_{t}^{2}-t\right)=-d t+2 B_{t} d B_{t}+\frac{1}{2} 2\left(d B_{t}\right)^{2}=2 B_{t} d B_{t} . \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
B_{t}^{2}-t=2 \int_{0}^{t} B_{s} d B_{s} \tag{15}
\end{equation*}
$$

and all Itô-integrals are \mathcal{F}_{t}-martingales (B.Ø. Cor. 3.2.6).
Alternatively, checking the martingale definitions, $B_{t}^{2}-t \subset L^{2}(\Omega) \subset L^{1}(\Omega)$, and also adapted to \mathcal{F}_{t}. Finally, for $0 \leq s<t$, and $\Delta B=B_{t}-B_{s}$,

$$
\begin{align*}
\mathrm{E}\left(B_{t}^{2}-t \mid \mathcal{F}_{s}\right) & =\mathrm{E}\left(\left(B_{s}+\Delta B\right)^{2}-t \mid \mathcal{F}_{s}\right) \\
& =\mathrm{E}\left(B_{s}^{2}+2 B_{s} \Delta B+\Delta B^{2}-t \mid \mathcal{F}_{s}\right) \\
& =B_{s}^{2}+2 B_{s} \mathrm{E} \Delta B+(t-s)-t \tag{16}\\
& =B_{s}^{2}-s
\end{align*}
$$

3 Problem

(a) Solve the 1D stochastic differential equation

$$
\begin{equation*}
d X_{t}=\left(1-X_{t}\right) d t+d B_{t}, t \geq 0 \tag{17}
\end{equation*}
$$

where $X_{0}=Z$. Here Z has mean μ and variance σ^{2} and is independent of the Brownian motion. Write down the time varying mean and the variance of the solution (Hint: Apply a suitable integrating factor).
(b) Assume that X_{t} and Y_{t} satisfy the stochastic differential equations ($X_{t}, Y_{t}, B_{t} \in \mathbb{R}$):

$$
\begin{align*}
d X_{t} & =\alpha X_{t} d t+Y_{t} d B_{t}, X_{0}=x_{0}, \\
d Y_{t} & =\alpha Y_{t} d t-X_{t} d B_{t}, Y_{0}=y_{0} . \tag{18}
\end{align*}
$$

Derive and solve the differential equation for $R_{t}=X_{t}^{2}+Y_{t}^{2}$.

Solution:

(a) The equation may be transformed into the class of linear equations we have considered by introducing $Y_{t}=X_{t}-1$. The trick with an integrating factor may also be applied directly by multiplying the equation with a function $h(t)$ and observe that $h(t) d X_{t}=d\left(h(t) X_{t}\right)$ $X_{t} h^{\prime}(t) d t:$

$$
d\left(h(t) X_{t}\right)-X_{t} h^{\prime}(t) d t=h(t) d t-X_{t} h(t) d t+h(t) d B_{t} .
$$

For $h(t)=e^{t}$ we obtain

$$
d\left(e^{t} X_{t}\right)=e^{t} d t+e^{t} d B_{t}
$$

or

$$
X_{t}=Z e^{-t}+\left(1-e^{-t}\right)+\int_{0}^{t} e^{s-t} d B_{s}
$$

Finally,

$$
\begin{aligned}
\mathrm{E} X_{t} & =e^{-t} \mathrm{E} Z+\left(1-e^{-t}\right)+\mathrm{E} \int_{0}^{t} e^{s-t} d B_{s}=e^{-t} \mu+\left(1-e^{-t}\right), \\
\operatorname{Var} X_{t} & =e^{-2 t} \sigma^{2}+\operatorname{Var} \int_{0}^{t} e^{s-t} d B_{s}=e^{-2 t} \sigma^{2}+\int_{0}^{t} e^{2(s-t)} d s \\
& =e^{-2 t} \sigma^{2}+\frac{1}{2}\left(1-e^{-2 t}\right) .
\end{aligned}
$$

(Note that Z is also independent of $\int_{0}^{t} e^{s-t} d B_{s}$).
(b) In this case, the 2D process $\left(X_{t}, Y_{t}\right)$ is transformed into the 1D process $R_{t}=X_{t}^{2}+Y_{t}^{2}$. We need the multidimensional Itô Formula for $g(x, y)=x^{2}+y^{2}$, which is this case, since $\partial^{2} g / \partial x \partial y=0$, will be

$$
\begin{equation*}
d g(x, y)=2 x d x+2 y d y+\frac{2}{2}(d x)^{2}+\frac{2}{2}(d y)^{2} . \tag{19}
\end{equation*}
$$

Thus, also introducing the rule $\left(d B_{t}\right)^{2}=d t$,

$$
\begin{align*}
d R_{t} & =2 X_{t}\left(\alpha X_{t} d t+Y_{t} d B_{t}\right)+2 Y_{t}\left(\alpha Y_{t} d t-X_{t} d B_{t}\right)+Y_{t}^{2} d t+X_{t}^{2} d t \\
& =(2 \alpha+1)\left(X_{t}^{2}+Y_{t}^{2}\right) d t=(2 \alpha+1) R_{t} d t \tag{20}
\end{align*}
$$

The solution of this (ordinary) diff. equation follows immediately

$$
\begin{equation*}
R_{t}=\left(x_{0}^{2}+y_{0}^{2}\right) e^{(2 \alpha+1) t} \tag{21}
\end{equation*}
$$

4 Problem

(a) Define the generator A of an autonome Itô diffusion

$$
\begin{equation*}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}, X_{t} \in \mathbb{R}^{n}, B_{t} \in \mathbb{R}^{m} \tag{22}
\end{equation*}
$$

Express the solution $u(t, x), t>0, x \in R^{n}$, of the problem

$$
\begin{align*}
\frac{\partial u}{\partial t} & =A u \\
u(0, x) & =f(x), \tag{23}
\end{align*}
$$

in terms of f and X_{t}. Show how this gives an explicit formula for the solution when the diffusion is ordinary Brownian motion.

The Ornstein-Uhlenbeck process is an Itô diffusion and a simple 1D model for physical Brownian motion. Consider the special case

$$
\begin{equation*}
d X_{t}=-X_{t} d t+d B_{t} \tag{24}
\end{equation*}
$$

Let $0<c<C$ and consider the stopping time

$$
\begin{equation*}
\tau_{c, C}=\inf \left\{t \geq 0 ; X_{0}=c, X_{t}=0 \text { or } X_{t}=C\right\} \tag{25}
\end{equation*}
$$

It is known that $E\left(\tau_{c, C}\right)<\infty$.
(Hint for (b) and (c): The differential equation $-x y^{\prime}+\frac{1}{2} y^{\prime \prime}=1$ has the general solution

$$
\begin{equation*}
y(x)=C_{1}+C_{2} g(x)+y_{p}(x), \tag{26}
\end{equation*}
$$

where

$$
\begin{align*}
g(x) & =\int_{0}^{x} e^{s^{2}} d s \\
y_{p}(x) & =\sqrt{\pi} \int_{0}^{x} \operatorname{erf}(s) e^{s^{2}} d s \tag{27}\\
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s
\end{align*}
$$

(b) Compute the probability that X_{t} hits the level C before it hits 0 .
(c) Express $E\left(\tau_{c, C}\right)$ in terms of the functions in Eqn. 27. Determine $E\left(\tau_{c}\right)$, where $\tau_{c}=$ $\inf \left\{t \geq 0 ; X_{0}=c, X_{t}=0\right\}$.
Solution
(a) The generator is the differential operator

$$
\begin{equation*}
A=b(x) \cdot \nabla+\frac{1}{2} \sum_{i, j=1}^{n}\left(\sigma \sigma^{t}\right)_{i j} \frac{\partial^{2}}{\partial x_{i} \partial y_{j}} \tag{28}
\end{equation*}
$$

The solution may be expressed as

$$
\begin{equation*}
u(t, x)=\mathrm{E}^{x} f\left(X_{t}\right) . \tag{29}
\end{equation*}
$$

The probability density for a Brownian motion at time t starting at 0 for $t=0$ is

$$
\begin{equation*}
\varphi(x)=\frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{|x|^{2}}{2 t}\right) \tag{30}
\end{equation*}
$$

Thus, is that particular case,

$$
\begin{equation*}
u(t, x)=\mathrm{E}^{x} f\left(B_{t}\right)=\int_{y} f(y) \varphi(x-y) d^{n} y \tag{31}
\end{equation*}
$$

(b) This is an application of Dynkin's formula: If $\mathrm{E} \tau<\infty$, then for an $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\mathrm{E}^{x} f\left(X_{\tau}\right)=f(x)+\mathrm{E}^{x} \int_{0}^{\tau} A f\left(X_{s}\right) d s \tag{32}
\end{equation*}
$$

In the present case, the generator is the operator

$$
\begin{equation*}
-x \frac{d}{d x}+\frac{1}{2} \frac{d^{2}}{d x^{2}} \tag{33}
\end{equation*}
$$

and the idea is to find a nice $f \in C_{c}^{2}(\mathbb{R})$ such that $A f=0$ on the interval $[0, C]$ Here, the general solution of the equation

$$
\begin{equation*}
-x \frac{d f}{d x}+\frac{1}{2} \frac{d^{2} f}{d x^{2}}=0 \tag{34}
\end{equation*}
$$

is given, and $g(x)$ will work if we modify it with a smooth transition to 0 outside $[0, C]$, e.g. $f(x)=g(x) \theta(x)$ where $\theta \in C_{c}^{2}(\mathbb{R}), \theta(x)=1$ on $[0, C]$. Let p_{C} be the probability we are looking for. Then from Dynkin's Lemma,

$$
\begin{equation*}
p_{C} g(C)+\left(1-p_{C}\right) g(0)=g(c)+0 . \tag{35}
\end{equation*}
$$

Since $g(0)=0$, we obtain

$$
\begin{equation*}
p_{C}=\frac{g(c)}{g(C)} . \tag{36}
\end{equation*}
$$

(c) We still use Dynkin's Formula, and need that $A f=1$ on the interval $[0, C]$. Therefore, y_{p} (actually $\left.y_{p}(x) \theta(x)\right)$ is feasible since $A y_{p}\left(X_{t}\right)=1$ as long as $X_{t} \in[0, C]$. Then,

$$
\begin{equation*}
p_{C} y_{p}(C)+\left(1-p_{C}\right) y_{p}(0)=y_{p}(c)+\mathrm{E}^{x}\left(\tau_{c, C}\right) \tag{37}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\mathrm{E}^{x}\left(\tau_{c, C}\right) & =p_{C} y_{p}(C)-y_{p}(c) \\
& =\frac{g(c)}{g(C)} y_{p}(C)-y_{p}(c) \tag{38}\\
& =\frac{y_{p}(C)}{g(C)} g(c)-y_{p}(c) .
\end{align*}
$$

If we look at the definitions of g and y_{p}, we observe first of all that

$$
\begin{equation*}
\frac{y_{p}(C)}{g(C)}=\frac{\sqrt{\pi} \int_{0}^{C} \operatorname{erf}(s) e^{s^{2}} d s}{\int_{0}^{C} e^{s^{2}} d s}<\sqrt{\pi} \tag{39}
\end{equation*}
$$

and, moreover,

$$
\begin{equation*}
\lim _{C \rightarrow \infty} \frac{\int_{0}^{C} \operatorname{erf}(s) e^{s^{2}} d s}{\int_{0}^{C} e^{s^{2}} d s}=1 \tag{40}
\end{equation*}
$$

Thus, $\mathrm{E}^{x}\left(\tau_{c, C}\right)$ is uniformly bounded:

$$
\begin{equation*}
\mathrm{E}^{c}\left(\tau_{c, C}\right)<\sqrt{\pi} g(c)-y_{p}(c)=\sqrt{\pi} \int_{0}^{c}(1-\operatorname{erf}(s)) e^{s^{2}} d s \tag{41}
\end{equation*}
$$

Since we also have

$$
\begin{equation*}
\tau_{c, C}(\omega) \underset{C \rightarrow \infty}{\nearrow} \tau_{c}(\omega) \tag{42}
\end{equation*}
$$

for all paths, we obtain by the Monotone Convergence Theorem that $\mathrm{E}^{c}\left(\tau_{c, C}\right) \underset{C \rightarrow \infty}{\nearrow} \mathrm{E}^{c}\left(\tau_{c}\right)$, or

$$
\begin{equation*}
\mathrm{E}^{c}\left(\tau_{c}\right)=\sqrt{\pi} \int_{0}^{c}(1-\operatorname{erf}(s)) e^{s^{2}} d s \tag{43}
\end{equation*}
$$

Digression: Observe that it is essential that $A f$ in Dynkin's formula does not cause problems for us when $|x| \rightarrow \infty$. Even if $A y_{p}(x)=1$ for all values of x, we can not write something like

$$
y_{p}(0)=y_{p}(c)+\mathrm{E}^{c} \int_{0}^{\tau_{c}} A y_{p}\left(X_{s}\right) d s=y_{p}(c)+\mathrm{E}^{c}\left(\tau_{c}\right)
$$

which leads to the absurd result

$$
\mathrm{E}^{c}\left(\tau_{c}\right)=-y_{p}(c)!
$$

We need to ensure that we are able to taper off f by a function like θ above, and that is impossible if we just consider the interval $[0, \infty)$.

