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The Brownian motion will be the basic stochastic process we are considering in this course.

Brownian motion is the mathematical idealization of a highly physical phenomenon, namely

the irregular and unpredictable motion of microscopic particles in a �uid. The motion is due to

the impact of bouncing molecules on the particle, and the phenomenon was discovered in 1828

by the Scottish botanist Robert Brown (Wikipedia reports about a brief controversy in the

1990-s dealing with whether Brown�s microscope was good enough to see what he claimed to

see). The mathematical model of Brownian motion was derived much later by Albert Einstein

and Marian Smoluchowski.

Øksendal shows the existence of (mathematical) Brownian motion by means of two rather

deep theorems by A. Kolmogorov, but it is, in fact, possible to derive Brownian motion by

a much more constructive approach. This derivation also indicates how to make a computer

programs able to simulate Brownian motion with any prescribed level of accuracy. We present

the alternative approach based on an unpublished note by Professor Henrik H. Martens (1927�

1993), and the argument is a nice application of the Borel-Cantelli Lemma. The construction

goes apparently back to Paul-Pierre Lévy, one of the founders of modern probability theory.

1 Standard Brownian Motion

We start by postulating the properties we want Brownian motion to have (but can not yet say

whether it really exists).

A one-dimensional standard Brownian motion (starting at x = 0 at t = 0) is a stochastic

process B (t), t � 0, such that

(i) B (t) is a Gaussian stochastic process,

(ii) E (B (t)) = 0;

(iii) E (B (s)B (t)) = min (s; t) :

(In the derivation below it is convenient to write B (t) instead of using Øksendal�s notation

Bt).

Let us for the moment assume that it exists and consider some of its properties, following from

the three postulates. First of all, the Brownian motion has independent increments. By this

is understood that the change from time t1 to t2 is independent of the change from s1 to s2
if the intervals [t1; t2] and [s1; s2] are non-overlapping. This follows easily from (ii) and (iii)
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(assuming that t1 < t2 � s1 < s2):

E [(B (t2)�B (t1)) (B (s2)�B (s1))]
= E [B (t2)B (s2)]� E [B (t1)B (s2)]� E [B (t2)B (s1)] + E [B (t1)B (s1)] (1)

= t2 � t1 � t2 + t1 = 0:

The increments are thus uncorrelated, and hence independent, since all variables are (multi-

variate) Gaussian.

The variance of the increment increases linearly with time (assume t1 < t2):

Var [(B (t2)�B (t1))]

= E
h
B (t2)

2 � 2B (t2)B (t1) +B (t1)2
i

(2)

= t2 � 2t1 + t1 = t2 � t1:

Note that it is the variance and not the standard deviation that increases linearly with time.

The increments are stationary in the sense that

Var [(B (t2 + s)�B (t1 + s))]
= t2 + s� t1 � s
= t2 � t1 (3)

= Var [(B (t2)�B (t1))] :

Brownian motion is a Markov process: The future is only dependent on where we are, and not

of the history up to the present position.

Before we continue, we observe that the problem of existence is related to the fact that time

t is continuous. It is not di¢ cult to produce a Brownian motion where t takes only discrete

values. Let us �rst consider such a construction, and assume that time is discrete,

t = 0;�t; 2�t; � � � ; n�t; � � � : (4)

Let �B1; � � � ;�Bn; � � � be a sequence of independent, zero mean Gaussian variables with vari-
ance �t, and de�ne

B0 = 0;

B1 = �B1;

B2 = B1 +�B2; (5)

� � �
Bn = Bn�1 +�Bn:

It is easy to see that the process fBng1n=0 satis�es the postulates (i) to (iii) above, including
the last one, since

E (BnBm) = min (n;m) ��t: (6)

2



0 0.2 0.4 0.6 0.8 1
2

1.5

1

0.5

0

0.5

1

1.5

2

Time, t

B(
t)

Figure 1: Five independent paths for a standard discrete Brownian motion, �t = 10�4.

By choosing �t su¢ ciently small, we may thus obtain a discrete Brownian motion which

mimics the continuous one (if it exists!) as close as we want.

Before you read further, you should start Matlab and try the following little program, which

generates a discrete Brownian motion from t = 0 to t = 1:

N = 10^5; Dt = 1/N;

DB = sqrt(Dt) * randn(N,1);

B = cumsum(DB);

plot((1:N)*Dt,B);

Try to run a loop and accumulate several graphs on the same plot. Also try to experiment

with the value of N . Five paths using this program are shown in Fig. 1.

The simulation shown in the �gure represents an accurate and acceptable realization of a

Brownian motion for many practical purposes. The simulation method is fast and reliable.

The question is therefore why we now dig into the rather technical and di¢ cult construction

that eventually will lead to a Brownian motion de�ned for all t-s and with a.s. continuous paths.

In a digital world like the present, there is no good answer to this question. The construction

below is mathematically beautiful, and the existence of a continuous time Brownian motion

leads in turn to the beautiful theory of the Itô integral, but is all the fuzz really necessary?

With the tremendously powerful computers that everyone has access to, all practical work

is digital, and all simulations have to be discrete by the very nature of the computer. It is

therefore a good question whether it is at all necessary to bother with the continuous case.

The answer will depend on your personal attitude, and it is acceptable to skip the following

section and simply accept the conclusions ("The mathematicians that insist that everything

they use should be proved are welcome to apply this principle to their own PC-s", citation of

unknown origin).
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2 Brownian Motion With Continuous Paths

We shall now construct a Brownian motion where the paths (realizations) are continuous for

all t-s with probability 1. The argument is based on a construction that starts with the discrete

Brownian motion above with �t = 1. This de�nes the Brownian motion on the integers, B (0),

B (1) ; B (2) ; � � � . Half-integer values are �lled in by adding a random contribution to the

linear interpolation, and this is repeated again and again. In the limit we obtain a function

which we �nally prove is the Brownian motion.

The argument depends on two lemmas which we state �rst:

Lemma 1: Assume that the standard Brownian motion B (t) exists and that 0 � t1 < t2.

De�ne

Y = B

�
t1 + t2
2

�
� B (t2) +B(t1)

2
: (7)

Then EY = 0, VarY = (t2 � t1)=4, and Y is independent of B (t1) and B (t2).

Note that Y is the di¤erence between the (hypothetical) Brownian motion at the midpoint

between t1 and t2, and the line from (t1; B (t1)) to (t2; B (t2)).

Proof: It is obvious that E (Y ) = 0; and the expression for VarY follows from the postulates

for the Brownian motion. In order to prove the independence of the endpoints, simply verify

that

E (Y �B (t1)) = E (Y �B (t2)) = 0; (8)

since we are dealing with Gaussian variables.

Lemma 2: Let X be N (0; 1). Then

P (jXj > n) �
r
2

�

1

n
e�n

2=2: (9)

Proof: The proof consists of the following simple trick:

P (jXj > n) = 2
Z 1

n

1p
2�
e�x

2=2dx

=

r
2

�

Z 1

n

x

x
e�x

2=2dx

�
r
2

�

1

n

Z 1

n
xe�x

2=2dx (10)

=

r
2

�

1

n
e�n

2=2:

As we saw above, it is simple to de�ne a discrete Brownian motion, so let us start with �t = 1
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and set

B (0) = 0;

B (1) = X1;

B (2) = B (1) +X2; (11)

� � � (12)

B (n) = B (n� 1) +Xn;
� � � ;

where Xn are independent N (0; 1) variables. By means of Lemma 1 this may be extended to

a discrete Brownian motion on the half-integers by keeping B (0), B (1) ; � � � ; and de�ning,
for each n;

B

�
n+

1

2

�
=
B (n) +B (n+ 1)

2
+ Yn; (13)

where Y is N (0; 1=4).

Let now B0 (t) be the piecewise linear function passing through the points B (0), B (1), � � � .
This function, although it is de�ned for all t-s, is of course not a Brownian motion. We let

B1 (t) be the corresponding piecewise linear function passing through the integers and the

half-integers. Note that B1 may be written

B1 (t) = B0 (t) + �1 (t) ; (14)

where �1 (t) is a piecewise linear function that is 0 for t = n, and Yn for t = n+ 1=2 (make a

drawing of B0, B1 and �1!).

In general, we may de�ne Bn as the piecewise linear function passing through all points of the

form t = k=2n, k = 0; � � � ; n and write Bn in the form

Bn = B0 + �1 + � � �+ �n: (15)

Here f�ig are the extra contributions entering at the new mid-points at every step. Note

that �i is 0 at every second gridpoint, e.g. �2 (t) = 0 at t = 0; 1=2; 1; � � � , non-zero at t =
1=4; 3=4; � � � , and linear in between. The values at the non-zero gridpoints are all independent
and Gaussian with 0 mean and a variance given by Lemma 1. In particular, the number of

non-zero gridpoints in [0; 1] for �n is 2n�1, and the values at these gridpoints are independent

zero mean Gaussian variables with variance equal to 1=2n+1 (check it!). The values may be

generated from independent standard Gaussian variables X as Y = 2�(n+1)=2X.

We are now going to prove that

lim
n!1

Bn (t) = lim
n!1

(B0 (t) + �1 (t) + � � �+ �n (t)) = B (t) ; (16)

where B (t) is a continuous function (a.s.) ful�lling the postulates of the Brownian motion.

The continuity of the limit function B will be guarantied if we are able to prove that the series
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converges absolutely and uniformly, that is,

max
0�t�1

jB0 (t)j+
1X
n=1

max
0�t�1

j�n (t)j <1: (17)

(This is a general result from calculus). Because of the invariance of Brownian motion it is

su¢ cient only to consider the time interval [0 1].

The following lemma provides the key we need.

Lemma 3: The function family f�ng has the following property:

P

�
max
0�t�1

j�n (t)j >
n

2(n+1)=2
for in�nitely many n-s

�
= 0: (18)

(Note that in this lemma, we have a mapping from a probability space 
 which for a given

! provides all the Y -s we need for the construction of f�ng. The lemma says that the stated
condition only occurs for !-s belonging to a set of measure 0).

Proof: The maximum of �n has to be attained at one of the 2n�1 non-zero gridpoints with

values Yi = 2�(n+1)=2Xi, i = 1; � � � ; 2n�1. The maximum is thus equal to

1

2(n+1)=2
max (jX1j ; jX2j ; � � � ; X2n�1) : (19)

Hence,

P

�
max
0�t�1

j�n (t)j >
n

2(n+1)=2

�
= P

�
max

k=1;��� ;2n�1
jXkj > n

�
� 2n�1P (jXj > n) (20)

� 2n�1
r
2

�

1

n
e�n

2=2:

For the �rst inequality, observe that�
! ; max

k=1;��� ;2n�1
jXk (!)j > n

�
�

[
k=1;��� ;2n�1

f! ; jXk (!)j > ng : (21)

The second inequality is Lemma 2.

If we now let

An =

�
! ; max

0�t�1
j�n (t)j >

n

2(n+1)=2

�
; (22)

we obtain that 1X
n=1

P (An) �
1X
n=1

2n�1
r
2

�

1

n
e�n

2=2 <1 (23)

(Because the factor e�n
2=2 kills everything in front). By the Borel-Cantelli Lemma, the set

A1 of !-s belonging to in�nitely many An-s has probability 0. When ! =2 A1,

max
0�t�1

j�n (t)j �
n

2(n+1)=2
(24)

6



for all n-s apart from a �nite number of them. This �nite number has no in�uence on the

convergence of the sequence in Eqn. 16, which, in fact, is then absolutely and uniformly

convergent, since
1X
n=1

n

2(n+1)=2
<1: (25)

There is nothing special with t = 1 in the above proof, so that the paths are continuous for all

t-s with probability 1.

It remains to prove that the limit process B (t) satis�es the postulates of Brownian motion. We

�rst to observe that the vector Bn = fBn (t1) ; Bn (t2) ; � � � ; Bn (tK)g is multivariate Gaussian
since each component is a linear sum of Gaussian variables, and this is also the case with any

linear sum of its components (Øksendal, Thm. A.5). Since

Var [Bn (t)�Bn�1 (t)] = Var�n (t) �
1

2n+1
; (26)

fBn (t)g will be a Cauchy sequence in the space L2 (
; P ) and hence converge to a B (t) 2
L2 (
; P ). But this is the same limit function a.s., since we already know that Bn (t) converges

to B (t) a.s. This applies to all components in Bn, and the limit vector

B = fB (t1) ; B (t2) ; � � � ; B (tK)g (27)

is Gaussian by Thm. A.7 in Øksendal. Thus, B (t) is a Gaussian stochastic process. The rest

of the postulates for Brownian motion follow by similar limit arguments.

In Øksendal, Brownian motion is constructed in Rn from the start. We leave to the reader to

verify that the standard Brownian motion in Rn is just n independent components of the 1-D
motion constructed above, that is, the vector process

B (t) =

0BBB@
B1 (t)
B2 (t)
...

Bn (t)

1CCCA : (28)

An example of a 2-D discrete Brownian motion is displayed in Fig. 2.

The construction of the Brownian motion in Øksendal uses a rather deep theorem of A. Kol-

mogorov by �rst stating the joint Gaussian distributions for all �nite collections fB (t1) ; � � � ; B (tK)g.
It is easy to specify this distribution by �rst de�ning the probability density p of Y with mean

x and covariance matrix tI,

p (t; x; y) =
2

(2�t)n=2
exp

 
�jy � xj

2

2t

!
; x; y 2 Rn: (29)

The joint density of fB (t1) ; � � � ; B (tK)g (starting at 0) with 0 � t1 � � � � � tk is simply

p (t1; 0; x1) p (t2 � t1; x1; x2) � � � p (tK � tK�1; xK�1; xK) : (30)
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Figure 2: Simulated 2-D standard Brownian motion starting at (0; 0), �t = 10�4, 0 � t � 1.
Where is the end?

This is reasonable: B (t1) is N (0; t1), and since B (t1) and B (t2) � B (t1) are independent,
fB (t1) ; B (t2)g has the joint density

p (t1; 0; x1) p (t2 � t1; x1; x2) : (31)

The corresponding measure may be extended to ful�ll Kolmogorov�s consistency properties,

and therefore B (t) exists. The continuity follows from another of Kolmogorov�s theorems.

3 The Irregularity of Brownian Motion

Even if we have proved that the paths are continuous, the graphs indicate that Brownian

motion does not consists of smooth and nice functions. In this section we shall prove that the

paths are indeed quite irregular.

This section may be skipped completely without any signi�cant loss of information.

A partition P of the interval [a; b] is a set of points ftkg such that

a = t1 < t2 < � � � < tN = b: (32)

The limit P ! 0 means that maxk jtk � tk�1j = maxk j�tkj ! 0. The p-variation of a

continuous function de�ned on [a; b] is de�ned as

Mp = lim
P!0

X
P
jg(tk)� g(tk�1)jp (33)
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(lim means "limsup"). In particular, g is said to be of bounded variation if the 1-variation is

�nite. It is easy to prove (by the triangle inequality) that the limit M1 in this case is actually

M1 = sup
P

X
P
jg(tk)� g(tk�1)j : (34)

Lemma 4: A continuous function of bounded variation on a �nite interval has 0 quadratic

variation.

Proof: Set M1 = supP
P
P jg(tk)� g(tk�1)j. Note that since the interval is �nite, g is uni-

formly continuous, i.e. for any " > 0 there is a �(") such that

max
k
jg(tk)� g(tk�1)j � " (35)

whenever maxk jtk � tk�1j � �("). ThenX
P
jg(tk)� g(tk�1)j2 � max

k
jg(tk)� g(tk�1)j

X
P
jg(tk)� g(tk�1)j (36)

� "M1:

Since the bound "M1 holds for all partitions wheremaxk jtk � tk�1j � �("), we haveM2 � "M1.

Thus, M2 has to be 0.

Lemma 5: For a standard Brownian motion B(t) de�ned on [0; T ];

M2 = lim
P!0

X
P
jB(tk)�B(tk�1)j2 � T a.s. (37)

Corollary: The paths of a standard Brownian motion have in�nite variation a.s.!

Proof, Corollary: Since the quadratic variation is larger or equal to T a.s., the paths can
not be of bounded variation according to Lemma 4.

Note that although

E

 X
P
jB(tk)�B(tk�1)j2

!
=
X
P
(tk � tk�1) = T; (38)

The statement in Lemma 5 is much stronger.

Proof, Lemma 5: Let YP be the stochastic variable

YP =
X
P
jB(tk)�B(tk�1)j2 (39)

We �rst want to prove that

kYP � Tk22 = E (YP � T )
2 �!
P!0

0: (40)

We just observed that EYP = T . Moreover, with �Bk = B(tk)�B(tk�1),

EY 2P = E

 X
k

�B2k
X
l

�B2l

!
=
X
k

X
l

E
�
�B2k�B

2
l

�
: (41)
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Since we are dealing with Gaussian variables,

E
�
�B2k�B

2
l

�
=

�
�tk�tl; l 6= k
3�t2k; l = k

; (42)

where we have applied the four-cumulant identity for zero mean Gaussian variables (See Ex-

ercise Set 1),

E (X1X2X3X4) = E (X1X2)E(X3X4) + E (X1X3)E(X2X4) + E (X1X4)E(X2X3) : (43)

Thus,

EY 2P = 2
X
k

�t2k +
X
k

�tk
X
l

�tl = 2
X
k

�t2k + T
2: (44)

Putting this together,

E (YP � T )2 = EY 2P � 2TEYP + T 2

= 2
X
k

�t2k + T
2 � 2T 2 + T 2

= 2
X
k

�t2k (45)

� 2max
k
jtk � tk�1jT �!P!0 0:

Since mean square convergence implies pointwise convergence a.s. for a subset of partitions

(Lp-theory), it is clear that the quadratic variation has to be larger or equal to T a.s.
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