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The linear stochastic equations make up an important class of models, and, similarly to
the ordinary linear equations, there is a general analytic approach to their solution.

Recall that a regular �rst order di¤erential equation of the form

dy (t)

dt
= p (t) y + q (t) (1)

may be solved by multiplying the equation by an integrating factor, h (t),

hy0 = h (py + q) ;

so that
hy0 = (hy)0 � h0y = hpy + hq: (2)

By choosing h0 = �hp, that is, h (t) = exp
�
�
R t
t0
p (s) ds

�
, the innermost terms on both

sides cancel, and we are left with
(hy)0 = hq: (3)

By integration, we obtain

h (t) y (t)� h (t0) y (t0) =
Z t

t0

h (s) q (s) ds; (4)

or

y (t) =
y (t0) +

R t
t0
h (s) q (s) ds

h (t)
: (5)

It turns out that the same trick also works for linear stochastic equations of the form

dXt = p (t)Xtdt+ q (t) dBt: (6)

Assume that h (t) satis�es h0 = �hp as above, and consider the Itô process

Yt = h (t)Xt: (7)

If we apply the Itô formula, we obtain

dYt = h
0 (t)Xtdt+ h (t) dXt

= h0 (t)Xtdt+ h (t) [p (t)Xtdt+ q (t) dBt] (8)

= h (t) q (t) dBt:

Now both sides may be integrated and

Yt � Yt0 =
Z t

t0

h (s) q (s) dBs; (9)
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or

Xt =
Xt0 +

R t
t0
h (s) q (s) dBs

h (t)
;

h (t) = exp

�
�
Z t

t0

p (s) ds

�
: (10)

1.1 Physical BrownianMotion: The Ornstein-Uhlenbeck-Langevin
Equation

Consider a small particle in a �uid, constantly and randomly hammered on by the sur-
rounding �uid molecules. Although we are on the limits of continuous medium model
when the diameter of the particle is O (10�6m), we may argue that since the dynamic
viscosity of water or air is about 10�6m2=s, a velocity of 1m/s would correspond to a
Reynold�s number of O (1), we are within the linear friction range. For one dimensional
motion, the position S (t) would then be determined by the (non-dimensional) equation
of motion,

d2S (t)

dt2
+ �

dS (t)

dt
= W (t) : (11)

Here � is the viscous damping (or friction) coe¢ cient and W the �impulsive�excitation
force. The impulsive force consists of random knocks varying in strength and moment of
occurrence. The proper stochastic model for W (t) is that of a Poisson point process.

We denote the particle velocity by X and rewrite Eqn. 11 in our way as

dXt = ��Xtdt+ �dBt: (12)

This is a quite famous model not only for physical Brownian motion (The Ornstein-
Uhlenbeck model), but also for modelling so-called �shot noise�in electrical circuits (The
Langevin model). The simple discrete variant of the model is

Xj+1 �Xj = ��Xj�t+ "j; (13)

or
Xj+1 = (1� ��t)Xj + "j; (14)

which we recognise as the standard auto-regressive stochastic process of order 1 (AR-1).

Eqn. 12 is a linear SDE of the form above with constant coe¢ cients, and we leave to
reader to show that the complete solution may be written as

Xt = X0e
��t + �

Z t

0

e��(t�s)dBs: (15)

The solution consists of a transient dying out as e��t, and a contribution witch keeps the
motion going. The expectation of Xt is simply

E (Xt) = E (X0) e
��t; (16)
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since the expectation of the Itô integral is always 0. For the variance of Xt, we make the
reasonable assumption that X0 is independent of the Brownian motion, and then, from
Eqn. 15,

Var (Xt) = e
�2�tVar (X0) + Var

�
�

Z t

0

e��(t�s)dBs

�
: (17)

By the Itô isometry,

E

�
�

Z t

0

e��(t�s)dBs

�2
=

� Z t

0

e��(t�s)dBs

2
L2(
)

=
�e��(t�s)2

L2([0;t]�
) (18)

= �2
Z t

0

e�2�(t�s)ds (19)

=
�2

2�

�
1� e�2�t

�
:

From this we conclude that

Var (Xt) = e
�2�tVar (X0) +

�2

2�

�
1� e�2�t

�
�!
t!1

�2

2�
; (20)

a reasonable result.

What about the position itself? Now

dSt = Xtdt; (21)

and hence

St = S0 +

Z t

0

Xsds: (22)

Since Xt is clearly integrable on L2 ([0; t]� 
), we may interchange
R t
0
and E, so that

ESt = ES0 +

Z t

0

E (Xs) ds

= ES0 +

Z t

0

E (X0) e
��tds (23)

= ES0 +
EX0

�

�
1� e��t

�
In the limit t!1, we observe a permanent shift in the average position if EX0 6= 0.
The variance of the particle is also interesting. For simplicity, we assume that ES0 = 0,
EX0 = 0, so that

St =

Z t

0

Xsds =

Z t

0

�Z s

u=0

�e��(s�u)dBu

�
ds: (24)

This is an iterated integral, and we have not really discussed any type of Fubini-like
theorems involving Itô integrals. However, in the present case, the integrand of the inner
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Itô integral is so simple that it is no problems involved in interchanging the order of
integration, hence

St = �

Z t

0

�Z t

s=u

e�(s�u)ds

�
dBu =

�

�

Z t

0

�
1� e�(t�u)

�
dBu: (25)

The integral then becomes a simple Itô integral, and by the Itô isometry,

VarSt = kStk2L2([0 t]�
) =
�
�

�

�2 Z t

0

�
1� e�(t�s)

�2
ds

=

�
�

�

�2 �
t+

1

2�

�
�3 + 4e��t � e2�t

��
(26)

�
(

�2

3
t3; for small t-s,�
�
�

�2 �
t� 3

2�

�
; for large t-s.

(27)

It is interesting to see that the behaviour for small values of t is distinctly di¤erent from
that of the standard Brownian motion.

1.2 Linear systems with stochastic excitation

Example 5.3.1. in BØ gives an example of a two-dimensional linear system with stochastic
excitation. Such equations may be written in the general form

dXt = (AXt + h (t)) dt+K (t) dBt; (28)

where Xt;h (t) 2 Rn; Bt2 Rm, A 2 Rn�n, and K (t) 2 Rn�m. As usual, the integrating
factor is the matrix exponential, e�At. If we introduce

Yt = e
�AtXt; (29)

Itô�s formula gives
dYt = �Ae�AtXtdt+ e

�AtdXt; (30)

and after multiplying Eqn. 28 by e�At, we are left with

dYt = e
�Ath (t) dt+ e�AtK (t) dBt; (31)

from which it follows that

Xt = e
AtXt0 +

Z t

0

eA(t�s)h (s) ds+

Z t

0

eA(t�s)K (s) dBs: (32)

1.3 Note

Some other equations which are solvable using an integrating factor is discussed in the
exercises of Chapter 5 in BØ.
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