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This note should be read together with Problem 3.13 and the proof of Theorem 4.1.2
in BØ, and collects some results for this important class of stochastic processes. The term
Mean-Square refers to the norm kkL2(
;F ;P ).
For mathematical models originating from real world applications, stochastic variables

tend to have �nite mean and variance, and stochastic processes tend to be mean square
continuous, that is,

kXt �Xsk �!
t!s

0: (1)

Here and below, the norm is kkL2(
;F ;P ). Thus, if t! E (Xt) is a continuous function,

Var (Xt �Xs) �!
t!s

0 (2)

(check!). This does not imply that the paths themselves are continuous and, conversely,
having continuous paths does not necessarily imply that the stochastic process is mean
square continuous.

An assumption about mean square continuity simpli�es the arguments when we deal
with integrals of stochastic functions.

First of all, if Xt is mean-square continuous, the function t! kXtk will be continuous,
as follows from the inverted triangular inequality,

jkXtk � kXskj � kXt �Xsk : (3)

(check!).

Brownian motion is mean square continuous since E (Bt) is constant, andVar (Bt �Bs) =
jt� sj. Any weakly stationary stochastic process Xt is mean-square continuous since E (Xt)
is constant and the covariance function �X (t) is continuous:

�X (t)� �X (s) =
Z
R̂

�
ei�t � ei�s

�
d�X (�) �!

s!t
0 (4)

by dominated convergence, since �X is a bounded measure on R̂. Hence,

Var (Xt �Xs) = Var (Xt)� 2Cov (Xt; Xs) + Var (Xs) = 2�X (0)� 2�X (t� s) �!
s!t

0: (5)

Similar to ordinary continuous functions de�ned on a �nite interval, a mean-square
continuous random process on the �nite interval [S; T ] will be mean square uniformly con-
tinuous:

Lemma 1: If X (t) is a mean-square continuous process on the �nite interval [S; T ],
then for all �xed " > 0, there exist � (") > 0 so that

kXt �Xsk < "; (6)

whenever jt� sj < � (").
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Proof: The proof is similar to the proofs for ordinary continuous functions, using
compactness. The simplest is probably to assume there is an " where no such � > 0 works.
Then, for each n � 1, there are sn; tn 2 [S; T ] so that kXtn �Xsnk > ", whereas jsn � tnj <
1
n
. By the compactness of the closed, �nite interval [S; T ], pick a subsequence from fsng
convergent to s0 2 [S; T ]. Because jsn � tnj < 1

n
, the corresponding t-subsequence is

convergent to the same limit. This contradicts the assumption that X (t) is mean square
continuous at s0.

For a stochastic process ft,

R (!) =

Z T

S

ft (!) dt (7)

is just the regular integral of the realization ft (!) (The existence of such integrals, with
probability 1, is assumed to be part of the de�nition of ft).

Lemma 2: If ft is a stochastic process on [S; T ] with ft 2 L2 (
;F ; P ), then

kRk �
Z T

S

kftk dt: (8)

Proof: The proof requires Schwarz�Inequality and Tonelli�s Theorem:

kRk2 =
Z



�Z T

S

ft (!) dt

��Z T

S

fs (!) ds

�
dP (!)

�
Z



�Z T

S

jft (!)j dt
��Z T

S

jfs (!)j ds
�
dP (!)

=

Z T

S

Z T

S

�Z



jft (!)j jfs (!)j dP (!)
�
dtds

�
Z T

S

Z T

S

kftk kfsk dtds

=

�Z T

S

kftk dt
�2
: (9)

Recall the de�nition of a partition P of the interval [S; T ], and what it means that
P ! 0.

Proposition 1: If ft is a mean square continuous stochastic process on [S; T ], thenZ T

S

ftdt = lim
P!0

X
P
ftj (tj+1 � tj) (10)

Proof: Write X
P
fj�tj �

Z T

S

ftdt =
X
P

Z tj+1

tj

�
ftj � ft

�
dt; (11)

and apply Lemma 1 and Lemma 2.
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Similar to the regular Stieltjes integral, the integral of mean square continuous functions
exists whenever the distribution function � (t) has bounded variation:Z T

S

ftd� (t) = lim
P!0

X
j

f�j [� (tj+1)� � (tj)] ; �j 2 [tj; tj+1): (12)

However, this can not be immediately applied for the Itô integral, since Brownian motion
paths have in�nite variation with probability 1. Nevertheless, it turns out that the Itô
integral is what we expect for mean-square continuous functions.

Proposition 2 (BØ, Problem 3.13): If ft is a mean square continuous Ft-adapted
function on the �nite interval [S; T ], the Itô integral of ft may be computed by the formulaZ T

S

ftdBt = lim
P!0

Z T

S

�
(n)
t dBt (13)

where
�
(n)
t =

X
P
ftj�[tj ;tj+1); (14)

i.e. by using the function value at the left endpoint of the intervals in the partition.

Proof: The functions �(n)t are clearlyFt-adapted, and, for any " > 0, there exist � (") > 0
for ft as in Lemma 1 above. Thus, for any partition P where maxj jtj+1 � tjj < � ("), we
have ft � �(n)t 2

L2([S;T ]�
)
= E

 X
j

Z tj+1

tj

��ft � ftj ��2 dt
!

�
X
j

" (tj+1 � tj) = " (T � S) ; (15)

and the limit for the integrals in Eq. 13 follows from the Itô Isometry.

Mean square continuity makes also the main arguments in the derivation of Itô�s Formula
quite transparent, as stated in the next lemma.

Lemma 3: Let [S; T ] be a �nite interval and ft a mean square continuous, Ft-adapted
function. Then (with fj = ftj , �tj = tj+1 � tj, and �Bj = Btj+1 � Btj), the following
L2 (
)-limits apply:

(i)
P

P fj (�tj)
2 �!
P!0

0;

(ii)
P

P fj�tj�Bj �!P!0 0;
(iii)

P
P fj (�Bj)

2 �!
P!0

R T
S
ftdt;

(iv)
P

P fj (�tj)
n (�Bj)

m �!
P!0

0 when n+m � 3:

(16)

Proof: Since [S; T ] is bounded, kftk �M <1. Then (i) is trivial sinceX
P
fj (�tj)

2

 � maxj �tj �M �
X
P
�tj =M (T � S)max

j
�tj: (17)
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For (ii), we apply that ft is Ft-adapted to eliminate all terms of the form E (fifj�Bi�Bj)
when i 6= j, and hence,X

P
fj�tj�Bj


2

=
X
P
E (fj)

2 E (�Bj)
2 (�tj)

2 =

=
X
P
E (fj)

2 (�tj)
3 � max

j
(�tj)

2M2 (T � S) �!
P!0

0: (18)

For (iii) we �rst consider

X
P
fj (�Bj)

2 �
X
P
fj�tj


2

=

X
P
fj
�
(�Bj)

2 ��tj
�

2

= E

 X
P;P

fifj
�
(�Bi)

2 ��ti
� �
(�Bj)

2 ��tj
�!

(�)
= E

 X
P
f 2j
�
(�Bj)

2 ��tj
�2!

=
X
P
E
�
f 2j
�
E
�
(�Bj)

4 � 2 (�Bj)2�tj + (�tj)2
�

=
X
P
E
�
f 2j
� �
3 (�tj)

2 � 2 (�tj)2 + (�tj)2
�

� 2M2
X
P
(�tj)

2 �!
P!0

0: (19)

For the (�)-step, note that fifj
�
(�Bi)

2 ��ti
�
is independent of

�
(�Bj)

2 ��tj
�
for i < j,

and vice versa. The conclusion then follows from Proposition 1.

Statement (iv) is left for the reader.

The following (sketch of a) proof of Itô�s Formula assumes that all processes are mean-
square continuous.

We start with a mean-square continuous Itô Process Xt with representation

dXt = utdt+ vtdBt; (20)

where ut and vt are adapted mean-square continuous processes. The process Xt is trans-
formed by

Xt ! Yt = g (t;Xt) ; (21)

where g is smooth enough for the transformation and the derivations below. Introduce a
partition P of the interval [0; T ] and write

YT � Y0 = g (T;XT )� g (0; X0) =
X
P
g
�
tj+1; Xtj+1

�
� g

�
tj; Xtj

�
=
X
P
�gj: (22)
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The task is now to prove that the sum converges to the integral representation for Yt when
P ! 0. Expanding �gj in a Taylor series leads to

�gj = gxj�Xj + gtj�t+
1

2

�
gxxj�X

2
j + 2gxtj�Xj�t+ gttj�t

2
	
+ � � � ; (23)

where gxtj =
@2g
@x@t

�
tj; Xtj

�
etc., and

�Xj =

Z tj+1

tj

futdt+ vtdBtg : (24)

However, the leading order approximation to �Xj is uj�tj + vj�Bj, and writing �Xj =
uj�tj + vj�Bj + ej (ej is the error), we obtain

kejk = k�Xj � (uj�tj + vj�Bj)k

=


Z tj+1

tj

(ut � uj) dt+
Z tj+1

tj

(vt � vj) dBt


�

Z tj+1

tj

(ut � uj) dt
+


Z tj+1

tj

(vt � vj) dBt


� "�tj +

 Z tj+1

tj

kvt � vjk2 dt
!1=2

; (25)

by Lemma 2 and the Itô Isometry, also assuming that the partition is �ne enough to ensure
ku� ujk � ": For the last term in the RHS of Eq. 25, we shall assume that vt is L2-
Lipschitz continuous, that is kvt � vsk �M jt� sj (for a non-random vt, this is the regular
Lipschitz condition). ThenZ tj+1

tj

kvt � vjk2 dt �M2

Z �tj

0

t2dt =
M2

3
�t3j ; (26)

and

kejk �
 
"+

�
M2

3
�tj

�1=2!
�tj: (27)

We substitute �Xj by uj�tj + vj�Bj + ej in Eq. 23 and 22. If P ! 0 in Eq. 22,
the contribution from the error terms vanishes, and we obtain from Proposition 1, 2, and
Lemma 3:

YT � Y0 =
Z T

0

�
@g

@t
+ u

@g

@x
+
v2

2

@2g

@x2

�
dt+

Z T

0

vdBt; (28)

and the di¤erential form

dYt =

�
@g

@t
(t;Xt) + ut

@g

@x
(t;Xt) +

v2t
2

@2g

@x2
(t;Xt)

�
dt+ vtdBt: (29)
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