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1 Introduction

Measure and integration theory was developed by Henri Leon Lebesgue and Emile Borel

around 100 years ago. At that time, the theoretical founding of probability was rather

shaky and almost 30 years passed until Andrei N. Kolmogorov put the probability theory

on a sound foundation by merging probability and measure theory (of course, Kolmogorov

was not the only one that worked on this, but his name is in the forefront). Since that

time, advanced probability has always used the measure and integration theory language

introduced by Kolmogorov (and others!).

For a student coming from introductory courses in probability to an advanced text/lecture

using the measure and integration language this is a quite big (and di¢ cult) step. Measure

and integration theory is by itself an advanced mathematical topic which needs at least a

one semester course. Moreover, the background for measure theory should preferably also

include a course in linear analysis.

This informal note gives a survey of some of the key points, aiming to expand the even more

condensed exposition in the �rst chapters of Øksendal�s book.

WARNING: It is important to note that the text does not always give appropriate references
to the literature, and if this is the �rst time you see this material, the note is certainly not

easy to read!

Let us start by considering a uniformly distributed random variable ! on the unit interval


 = [0; 1]. We know that the probability that ! 2 A = [a; b] � 
 is

Pr (! 2 A) = Pr (a � ! � b) = b� a: (1)

If A is a more complicated set, say a union of disjoint intervals,

A =
N[
n=1

An; (2)

where An = [an; bn]; then

Pr (! 2 A) =
NX
n=1

(bn � an) =
NX
n=1

Pr (! 2 An) : (3)

It turns out that it is possible to attach such a probability to almost all thinkable sets in 
;

and this is a simple, but important example of what the mathematicians call a measure, or

more speci�c, a probability measure.
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If we have a function of !, say f : 
! R, the expectation of f (!) is equal to

E (f) =

Z


f (!) d!: (4)

Such integrals are of a more general kind than the Riemann integral we know from calculus,

and the most famous construction of a more general integral is the so-called Lebesgue integral.

Below we shall consider in somewhat more detail how we can come up with "thinkable" sets

and how it is possible to have a measure attached to them. This requires some set theory,

which we turn to next.

2 Open sets

This section is an intermezzo before we introduce the more central concept of a �-algebra.

Let A be a set on the real line R. A point x is an interior point in A if there exists an open
interval (a; b) such that

x 2 (a; b) � A: (5)

A set on the real line is open if it contains only interior points.

Hence, open intervals are open (!). Moreover, the empty set, ?, is open by de�nition.

It may be proved that U � R is open if and only if it can be written

U =

N[
n=1

In ; N � 1; (6)

where fIng are disjoint (i.e. In \ Im = ? when n 6= m), open intervals. Thus, the open sets
sets in R consist of a disjoint union of open intervals.

If we return to the interval 
 = [0; 1], we say that a set "U is open in 
" if there is an open

set V � R such that
U = V \ 
: (7)

Note therefore that [0; 1=2) is open in 
, but not as a set in R. Thus, f0g is an interior point
of [0; 1=2) if we �x our attention to [0; 1] ; but not if we consider [0; 1=2) as a subset of R!

It has turned out to be possible to introduce open sets in many di¤erent contexts, and we

may even de�ne what are the open sets from the very beginning. This has turned out to be

quite useful in mathematics.

A set X with a family (collection) T of open sets is called a topological space if T satis�es

(i) ? 2 T and X 2 T

(ii) U; V 2 T =) U \ V 2 T

(iii) Ui 2 T for i 2 I =)
[
i2I
Ui 2 T
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If this is the �rst time you see this, it looks cryptic, so note the following:

� In this case we have already decided what we mean by the open sets (which may be
quite di¤erent from the open sets in R!)

� Space here is used in a di¤erent meaning than in "vector space" or "linear space".

� In (iii), the index set I is arbitrary.

� On R or 
, the collections of open sets make those topological spaces.

The reason topological spaces are useful is that they enable us to introduce convergence and

de�ne continuous functions.

Let X and Y be topological spaces and let f be a function from X to Y , f : X ! Y . Then

f is continuous �() f�1 (U) is open in X for all open U in Y . (8)

(The symbol �() means "is de�ned by"). The notation f�1 (U) means

f�1 (U) = f! ; f (!) 2 Ug ; (9)

and not the inverse function (which requires that f is 1-1).

This de�nition of a continuous function looks strange, but reduces to the old "-�-de�nition

when X = Y = R.

The complement of a set U � X is all elements of X which are not in U . It is written

UC = XnU .

The complements of the open sets are the closed sets. Note:

� Some sets are neither open nor closed (like the half-open intervals in R).

� The whole space X is both open and closed!

3 Sigma algebras and measures

A �-algebra of sets, F , is a collection of sets in X which satis�es

(i) ? 2 F ;

(ii) A 2 F =) AC 2 F ;

(iii) A1; A2; � � � ;2 F =) A =

1[
n=1

An 2 F :
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The simplest �-algebra we can have in X is F = f?; Xg. The largest possible �-algebra is
denoted 2X and is called the power set, that is, all possible subsets of X. We shall return to

other examples later.

The collection T of open sets considered in the previous section is not a �-algebra (because of
(ii)). However, we can have �-algebras containing the open sets, and the smallest �-algebra

containing the open sets is called the Borel �-algebra, B. The formal de�nition of B is as the
intersection of all �-algebras that contain the open sets,

B = \fF ;F is a �-algebra containing the open setsg : (10)

The sets in B are called the Borel sets. B contains (among others)

� all open sets

� all closed sets (because of (ii)!)

� countable unions (and intersections) of closed and open sets

Countable is an important concept in measure theory: Something is countable if it can be

indexed by all or a �nite set of the natural numbers, f1; 2; 3; � � � g = N.

It is customary to say that B is closed under all countable set operations.

Below we shall always use B for the Borel sets when the underlying space and the open sets
are obvious.

The countability is also the origin of the somewhat strange name �-algebra. Sigma refers

to the sum-sign, and means that we may write
P1
n=1 or [1n=1 etc. That is, we only have a

countable number of elements in the sum, union, etc.

In the �rst section, X = 
 = [0; 1], and we introduced the probability P (A) for some sets in


: This may be generalized to the Borel sets in 
 by de�ning

P (A) = inf
A�U , U open

P (U) ; (11)

since the open sets were so simple in this case. This so-called Lebesgue measure has the

(almost) obvious properties

(i) 0 � P (A) � 1;

(ii) P (
) = 1; P (?) = 0;

(iii) If A1; A2; � � � is a countable number of disjoint sets

P

 1[
n=1

An

!
=

1X
n=1

P (An) : (12)
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The Lebesgue measure is de�ned similarly for the Borel sets on R as well, but then P (A)
may take any value from 0 to 1 (This de�nition of the Lebesgue measure is not quite the

full story, but it is OK for us).

The Lebesgue measure is a prototype of measures. We shall actually need to introduce

measures on more general �-algebras than the Borel sets, but we shall not go into details

how such measures may be de�ned (sometimes this is far from trivial). The measure has a

number of useful properties, and we shall often need the following two:

(1) Assume that A1 � A2 � � � � and that A = [1n=1An. Then P (A) = limn!1 P (An).

(2) Assume that A1 � A2 � � � � and that A = \1n=1An. If P (A1) < 1, then P (A) =
limn!1 P (An).

(If you wonder about the extra condition P (A1) < 1 in (2): It it of course satis�ed for

probability measures. However, consider the following sets in R: An = [n;1), n = 1; 2; � � � .
What happens to A in this case?)

4 The Lebesgue integral

Let 
 be any set and F a �-algebra in 
: Assume further that we have a measure m de�ned

for the sets in the �-algebra and satisfying

(i) 0 � m (A) � 1;

(ii) m (?) = 0;

(iii) If A1; A2; � � � is a countable number of disjoint sets

m

 1[
n=1

An

!
=

1X
n=1

m (An) (13)

The triplet f
;F ;mg is called a measure space.

Both [0; 1] and R together with the Borel sets and the Lebesgue measure are measure spaces.

Let f
;F ;mg be a measure space and f a function from 
 to R,

f : 
! R: (14)

Let as before B be the Borel sets in R. The function f is said to be F-measurable if

f�1 (B) 2 F for all B 2 B � R: (15)

Let A 2 F . The indicator function �A : 
! R is de�ned as

�A (x) =

�
1; x 2 A;
0; x =2 A: (16)
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This function is F-measurable: Show that the only possibilities for ��1A (B) are f?;
; A;ACg,
and all those are members of F .

Sums, products and pointwise limits of measurable functions are also measurable. These are

technical facts we shall not prove here.

It is also important to know that in order to check whether a function is measurable, it is

actually enough to check that (15) holds for the open sets T � B (This is sometimes used as
the de�nition of measurability, e.g. in Øksendal).

A simple function is a �nite sum of indicator functions,

s =

NX
i=1

ai�Ai ; N <1; (17)

where the sets fAng are disjoint. The integral of a positive simple function is de�ned in a
natural way as Z



sdm =

NX
i=1

aim (Ai) : (18)

Note that here we always replace 0 � 1 by 0.

Let s1; s2; � � � be a non-decreasing ( sn (x) � sn+1 (x) ) sequence of non-negative simple

functions and let

f (x) = lim
n!1

sn (x) (19)

(This limit exists for all x if we also include +1).

The Lebesgue integral of f is de�nedZ


fdm

�
= lim
n!1

Z


sndm (20)

Note:

� f is measurable

� the limit limn!1
R

 sndm is either �nite, or +1. Thus,

R

 fdm =1 is allowed.

� Any increasing sequence of simple functions converging pointwise to f leads to the

same integral value (not so obvious, but true).

The Lebesgue integral exists for all non-negative measurable functions, but it may be +1.

Let now f be any measurable, real valued function and write

f (x) = f+ (x)� f� (x) ;
f+ (x) = max (0; f (x)) ; (21)

f� (x) = �min (0; f (x)) :
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If
R
f+dm and

R
f�dm <1, then f is called Lebesgue-integrable andZ



fdm

�
=

Z


f+dm�

Z


f�dm: (22)

Note that Z


jf j dm =

Z


f+dm+

Z


f�dm <1: (23)

Similar de�nitions are also used for functions with values in C and Rn.

The functions�values on sets of measure 0 are of no importance in the Lebesgue theory since

the contribution to the integral from these values would in any case be 0. It is customary to

write that f and g are equal, apart from on a set of measure 0, as follows:

f = g a.e. �() f (x) = g (x) for all x 2 
, apart from x 2 A; m (A) = 0:

a.e. = almost everywhere.

There are two BIG theorems about the Lebesgue integral:

The Monotone Convergence Theorem: Let f1, f2, f3, � � � ; be a non-decreasing ( fn (x) �
fn+1 (x)) sequence of non-negative functions. ThenZ �

lim
n!1

fn

�
dm = lim

n!1

Z
fndm: (24)

The proof is tricky and not included here (It is given in the note about the Lebesgue integral).

The Dominated Convergence Theorem: Let f1, f2, f3, � � � ; be a sequence of functions
converging to a function f ,

f (x) = lim
n!1

f (x) a.e. (25)

Assume that there exists a positive function h such that jfn (x)j � h (x) for all n and thatZ
hdm <1: (26)

Then Z �
lim
n!1

fn

�
dm =

Z
fdm = lim

n!1

Z
fndm: (27)

Proof: See the note about the Lebesgue integral.

The Lp spaces are important collections of Lebesgue integrable functions:

Lp (
) =

�
f ; f is L.-integrable and

Z
jf jp dm <1

�
; 1 � p <1; (28)

L1 (
) = ff ; f is L.-integrable and m fx ; jf (x)j > ag = 0 for some a <1g : (29)

The Lp-spaces are Banach spaces with norms de�ned as

kfkp =
�Z

jf jp dm
�1=p

; 1 � p <1;

kfk1 = inf
a
(m fx ; jf (x)j > ag = 0) : (30)
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"Banach space" simply means that the Lp-spaces are linear vector spaces with the norm as

the distance function. Moreover, limits of functions in Lp are also members of Lp (see note

on the Lebesgue integral).

The simple functions are dense in Lp when 1 � p < 1. This means: If f 2 Lp and " > 0,
then there is a simple function s so that

kf � skp < ": (31)

The most interesting spaces for us are p = 1 and p = 2. The latter is a Hilbert space.

The monotone and dominated theorems are not the only theorems that could be mentioned

here. Many times we will need to interchange the order of multiple integrals, and the big

theorem about this is the Fubini-Tonelli Theorem. This theorem is actually two-in-one, where

the two parts correspond to the two theorems above.

Tonelli�s Theorem: If all functions occurring below are measurable and non-negative,ZZ
X�Y

f (x; y) dA =

Z
X

�Z
Y
f (x; y) dy

�
dx =

Z
Y

�Z
X
f (x; y) dx

�
dy: (32)

(The values may all be equal to +1).

Fubini�s Theorem: The conclusion in Tonelli�s theorem holds for arbitrary measurable

functions if one of the integrals, and hence all of them, has a �nite value when f is replaced

by jf j.

The �rst integral in Eqn. 32 is a double integral de�ned on the so-called product space of X

and Y . The others are called iterated integrals (one-dimensional integrals taken in sequence).

5 Random variables

We have now enough background to introduce some abstract probability theory.

Let 
 be any set and F a �-algebra in 
. We say that a measure P is a probability measure

on F if P (
) = 1:

The measure space triplet f
;F ; Pg is then called a probability space.

Example 1: The interval [0; 1]; the �-algebra B; and the Lebesgue measure, PLeb:; makes
up the probability space, f[0; 1] ;B; PLeb:g.

Example 2: Let 
 = N = f1; 2; 3; � � � g and F = 2N = all possible subsets. We de�ne the

measure P as

P (f1g) = 1

2
; P (f2g) = 1

4
; � � � ; P (fng) = 1

2n
; � � � : (33)

Check that this choice also gives a probability space!

A measurable function on a probability space is called a random (or stochastic) variable.

This random variable will turn out to be exactly what we know from before!
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Example: Let Y be a standard Gaussian variable and � (y) = Pr (Y � y). Let �inv be the
inverse function,

�inv : [0; 1]! R: (34)

If ! is a uniform random variable on [0; 1], then Y = �inv (!) is Gaussian. Thus, the function

�inv de�ned on the probability space f[0; 1] ;B; PLeb:g gives us a Gaussian random variable

on R. But is �inv really measurable? Yes, since it is continuous: In this case
�
�inv

��1
(B)

will be open for all open sets B � R, and the open sets in [0; 1] are included in the Borel sets
(in [0; 1]) (Think about this for some time!).

This is the key di¤erence between elementary (traditional) and advanced (modern) probabil-

ity: In elementary probability, the random variables are "outcomes of experiments" , whereas

in advanced probability, the random variables are functions from some underlying probability

space into the space of outcomes.

Elementary probability talks about random variables, but never mention that they are func-

tion values. However, who is picking the ! for us?

In probability, random variables are usually written with capital letters. We shall do this

here as well from now on.

Consider a random variable X. We can express statements about the outcomes, like

X � 0; 0 � X < 1; X > 106; X = 2; � � � ; (35)

as X 2 B for some set B 2 B � R. If we now think of X as a function X : 
 ! R; it is
obvious that

Pr (X 2 B) = Pr (X (!) 2 B) = P
�
X�1 (B)

�
: (36)

For any X : 
! R, the �-algebra generated by X is de�ned

HX
�
=
�
X�1 (B) ;B 2 B � R

	
: (37)

If X is F-measurable, then HX � F .

The �-algebra HX represents the collection of all statements about or associated to X.

By de�ning a measure �X on the Borel sets in R as

�X (B) = P
�
X�1 (B)

�
; (38)

the triplet

fR;B; �Xg (39)

also becomes a probability space. The measure �X is called the distribution of X.

The cumulative probability function of X, FX (x), is given by

FX (x) = �X ((�1; x]) : (40)

9



Elementary probability Advanced probability
Some "hidden mechanism" Probability space f
; F ; Pg

X is a random variable with values in
R; Z ; Rn;C:

X is a measurable function,
X : 
! R; Z ; Rn;C:

E (X) exists ( E (jXj <1) ) X 2 L1 (
;F ; P )
E (X) =

R1
�1 xfX (x) dx E (X) =

R

X (!) dP (!)

E
�
jXj2

�
<1 X 2 L2 (
;F ; P )

Var(X) = E
�
(X � EX)2

�
Var(X) = kX � EXk22

Events connected with X The �-algebra generated by X

Table 1: The correspondence between elementary and advanced probability theory.

If X has a nice distribution function, �X may be expressed by the probability density, fX of

X,

�X (B) =

Z
B
fX (x) dx: (41)

Similar de�nitions also apply for stochastic variables with values in Rn or C.

We shall now consider integrals of random variables, and all these integrals will be Lebesgue

integrals. First of all, if the random variable is integrable, that is
R

 jX (!)j dP (!) <1, the

expectation of X is de�ned as

E (X) =

Z


X (!) dP (!) : (42)

It turns out (and in fact not so di¢ cult to see) that we also have

E (X) =

Z
R
xd�X (x) ; (43)

which, for nice variables, is just what we already know,

E (X) =

Z
R
xfX (x) dx: (44)

This is the general pattern: The abstract de�nitions always boil down to the well-know in the

classical cases!

A word about notation: When we are integrating a function f de�ned on a probability space

f
;F ; Pg ; it is common to write this in the short way asZ
fdP: (45)

Thus, if there is no need to indicate ! explicitly, it is omitted.

Some of the correspondences between elementary and advanced probability are summarized

in Table 1:

Example: Consider a simple random variable X with just two outcomes, a and b. Set

A = f! ; X (!) = ag. Then AC = f! ; X (!) = bg : The only choices for X�1 (B) are�
?;
; A;AC

	
and HX =

�
?;
 ; A; AC

	
.
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The rule is: Simple functions �simple �-algebras!

More generally, the �-algebra generated by a collection of sets U is equal to the intersection
of all �-algebras that contain U . In this way, we may have �-algebras generated by a set of
random variables.

The following proposition is a consequence of the properties of measurable functions:

Proposition 1: Let H be a �-algebra contained in F . Then Lp (
;H; P ) is a closed subspace
of Lp (
;F ; P ) for 1 � p � 1.

Idea of proof:

� Since X is H-measurable, it is also F-measurable since H � F .

� Measurability is closed under linear operations.

� If fXng is a sequence in Lp (
;H; P ) converging to an element X in Lp (
;F ; P ), there
is a subsequence converging pointwise to X, that is,

Xnk (!) �!
k!1

X (!) a.e. (46)

(This statement is general Lp-theory). Then X is H-measurable and a member of
Lp (
;H; P ).

We shall �nally note a property we often use in proofs and various arguments

Proposition 2: Let f and g be two H-measurable functions, and assume thatZ
H
fdP =

Z
H
gdP for all H 2 H:

Then f = g a.e.

Proof: The integral is linear, so that it is enough to prove that f = 0 a.e. if
R
H fdP = 0 for

all H 2 H. Let A = f! ; f (!) > 0g and An = f! ; f (!) > 1=ng. Then A1 � A2 � � � � and
A = [1n=1An. But An 2 H and since

0 =

Z
An

fdP � P (An)
1

n
;

we must have that P (An) = 0. Hence, P (A) = limn!1 P (An) = 0. A similar argument

also applies for B = f!; f (!) < 0g.

6 Independence

Independence is probability�s main contribution to the programme carried out by Kolmogorov.

In fact, we could write

"Independence + Measure Theory = Probability Theory!" (47)
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In elementary probability we say that

A is independent of B �() Pr (A \B) = Pr (A) Pr (B) ; (48)

and this de�nition of independence is kept for two sets A and B in the �-algebra F of a

probability space, (
;F ; P ),

A is independent of B �() P (A \B) = P (A)P (B) : (49)

Two �-algebras are independent if all pairs of sets from the respective algebras are indepen-

dent. When it comes to pairs of random variables de�ned on 
, the de�nition is therefore

X is independent of Y �() All pairs from HX and HY are independent.

In elementary probability, the corresponding de�nition is that the joint distribution of X and

Y can be factorized, and this is now a proposition following from the de�nition.

Check out that if A and B are independent, then so are AC and B (and hence A and BC),

as well as AC and BC . Thus, convince yourself that A and B are independent if and only if

H�A and H�B are independent.

Now consider the probability space (
;F ; P ) and an arbitrary collection of �-algebras con-
tained in F . The collection consists of independent �-algebras if all �nite selections of sets
S, S = fBngNn=1, containing at most one set from each algebra, satisfy

P (B1 \B2 \ � � � \BN ) =
NY
n=1

P (Bn) :

Observe that pairwise independence is not su¢ cient. In particular, an arbitrary collection

fXigi2I of random variables de�ned on 
 consists of independent random variables if the

corresponding �-algebras fHXigi2I are independent.

It turns out that the most convenient de�nition of independence for an arbitrary collection

of events fAigi2I is to say that they are independent if the �-algebras of their respective
indicator functions ,

n
H�Ai

o
, are independent. This implies that for an arbitrary �nite subset

of fAigi2I , say fAngNn=1, we have

P (A1 \A2 \ � � � \AN ) =
NY
n=1

P (An) (50)

as well as

P
�
A
(C)
1 \A(C)2 \ � � � \A(C)N

�
=

NY
n=1

P
�
A(C)n

�
; (51)

where (C) means taking the complement, - or not.

However, it may be proved that fAigi2I are indeed independent if an arbitrary �nite subset
of fAigi2I satis�es 50, and this is the most common de�nition of independence found in the
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literature. Since the �rst de�nition clearly implies the second, they are, as they should be,

equivalent.

Example: Consider 
 = [0; 1] and the functions

X (!) = 1;

Y (!) =

�
1; 0 � ! � 1=2;
�1 1=2 < ! � 1: (52)

Check that HX = f
;?g and HY = f
;?; [0; 1=2]; (1=2; 1]g, and that all pairs from these

two �-algebras are independent!

Note that a constant random variable is independent of everything!

Independence will be a quite important concept for us in the following.

Example: In Øksendal, Edition 5, it is stated (and also considered in Exercise 2.5) that ifR

 jXY j dP;

R

 jXj dP , and

R

 jY j dP are �nite, and X and Y independent, then E (XY ) =

E (X) � E (Y ), that is, Z


XY dP =

Z


XdP �

Z


XdP: (53)

In Edition 6, the condition
R

 jXY j dP <1 has been removed.

In general,
R

 jXY j dP may be in�nite even if

R

 jXj dP , and

R

 jY j dP < 1 (consider

X (!) = Y (!) = !�1=2 on [0; 1]!), but when X and Y are independent, this can not happen,

and the condition
R

 jXY j dP < 1 included in Edition 5 is in fact super�uous. The proof

of the identity in Eqn. 53 for bounded simple functions is indicated in Exercise 2.5, and

this may be applied for arbitrary positive functions X and Y by applying the Monotone

Convergence Theorem. For the general case, we write, as before, X = X+�X� and observe

that HX+ � HX since �
X+
��1

(B) = X�1 (B \ [0;1]) � HX : (54)

The same applies to X� and Y = Y + � Y �. Thus, X+and X� are independent of Y +and

Y �. Having already proved the relation for positive variables, we then obtain

E [XY ] = E
��
X+ �X�� �Y + � Y ���

= E
�
X+Y + � Y �X+ �X�Y + +X�Y �

�
� � ��ll in! � � � (55)

= E (X) � E (Y ) :

In probability theory there is one little lemma which may be used for a lot of arguments (in

fact, it should have been promoted to a Theorem long time ago!). This is the Borel-Cantelli

Lemma. It is used several places in Øksendal�s text and it is included here for a reference.

Let us consider the events ! 2 An for n = 1; 2; 3; � � � , and the event that ! 2 An for in�nitely
many n-s. This set may be written

A1 = f!;! 2 An for in�nitely many ng =
1\
n=1

 1[
k=n

Ak

!
: (56)
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Note what this expression says: Regardless where we start to look (say at set number n), ! is

in at least some of the following sets. Using the de�nition of A1, the lemma goes as follows:

Borel-Cantelli Lemma:

(a) If
P1
n=1 P (An) <1; then P (A1) = 0.

(b) If all An are independent and
P1
n=1 P (An) =1, then P (A1) = 1.

(Note: Independence is crucial in (b). Just consider the case where An = A for all n-s, where

0 < P (A) < 1).

Proof of (a): Consider the function s =
P1
n=1 �An and note that ksk1 =

P1
n=1 P (An) <1.

Since s is integrable, it has to be �nite a.e., and s (!) = # times ! is in some An.

Proof of (b): This is somewhat tricky and requires the property of the measure listed above: If

B1 � B2 � � � � and P (B1) is �nite (as it is here), then P (\1n=1Bn) = limn!1 P (Bn). It also
requires an elementary result about in�nite products: If 0 < xn < 1; then �1n=1 (1� xn) =
0 ()

P1
n=1 xn = 1. Armed with these tools, the argument goes as follows (with Bn =

[1k=nAk):

P

 1[
k=n

Ak

!
= 1� P

 1\
k=n

ACk

!
indep.
= 1�

1Y
k=n

P
�
ACk
�
= 1�

1Y
k=n

(1� P (Ak)) = 1; (57)

since
P1
k=n P (Ak) =1.

(Do not worry if you do not grab this the �rst time you see it! The proof is not so essential

for us).

7 Conditional expectation

Conditional expectation is another rather di¢ cult concept in advanced probability. This

section is a little/rather heavy, and you should not expect to understand everything at once.

During the course we will return to this material several times.

You may remember the conditional probability, which typically is written P (AjB) and read
the conditional probability of A given the event B. The conditional probability is computed

using Bayes Rule,

P (AjB) = P (A \B)
P (B)

(58)

(the rule is simple to visualize using diagrams). The event B represents some kind of knowl-

edge we have and which in�uences the probability we are looking for. Similarly, the condi-

tional expectation of a random variable X given B could be de�ned asR
B XdP

P (B)
: (59)

Let fHigNi=1 � F be a �nite partition of 
, that is, 
 = [Nn=1Hi, Hi \ Hj = ? for i 6= j,

and P (Hi) > 0; i = 1; � � � ; N . This set de�nes a �nite �-algebra HN � F consisting of all
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possible unions formed from the sets; see B.Ø., Exercise 2.7. We may generalize the concept

of conditional expectation of X, given the �-algebra HN , by introducing the simple function,

Y =

NX
i=1

R
Hi
XdP

P (Hi)
�Hi : (60)

It is easy to verify that Z
H
Y dP =

Z
H
XdP (61)

for all H 2 HN . Moreover, since Y is constant on each of the Hi-sets, it is in fact HN -
measurable (alternatively, it is HN -measurable since it is a sum of HN -measurable indicator
functions). As observed in Section 5, if the integrals of two HN -measurable functions coincide
on all sets in HN , they are equal a.e. Thus, any other HN -measurable function satisfying
Eqn. 61 must be equal to Y a.e.

It turns out that the simple �nite situation above may be extended to a general �-algebra

H � F . Assume that we have a �-algebra H and a function X 2 L1 (
;F ; P ). The integral
of X over a set H 2 H will be a measure on H (that is, a mapping from H into the numbers

R, Rn, C; etc. depending on X):

Q (H) =

Z
H
XdP: (62)

This measure has the property that if P (H) = 0; then Q (H) = 0 (why?). Thus, the measure

Q on H is what is called absolutely continuous with respect to P restricted to H. A famous
theorem in measure theory (The Radon-Nikodym Theorem) then says that there exist a

unique function which is called the conditional expectation and written

E (XjH) ; (63)

such that

1. E (XjH) is H-measurable,

2.
R
H E (XjH) dP =

R
H XdP for all H 2 H:

The function is only unique up to values on a set of measure 0. It has all the properties of

Y above, but there is in general no partition of sets on which Y takes constant values. The

notation is strange, but so standard that it is impossible to change. It is confusing that an

expectation is a function, but the notation is used everywhere.

Example 1: The simplest possible �-algebra is H = f?;
g and the only H-measurable
functions are the constants. Check that it works to set E (XjH) = E (X)! This is logical: If
we only have the trivial (or no!) other information, the conditional expectation is the same

as the ordinary expectation.

Example 2: If X itself is H-measurable, E (XjH) = X a.e. (since X satis�es the de�nition

and E (XjH) is unique).
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Example 3:

We recover Bayes Rule if we consider the simple case that X = �A and H = f?;
; B;BCg,
where 0 < P (B) < 1. In this case Y = E (XjH) must satisfy the four equationsZ

B
Y dP =

Z
B
�AdP = P (A \B) ;Z

BC
Y dP =

Z
BC
�AdP = P

�
A \BC

�
;Z



Y dP =

Z


�AdP = P (A) ; (64)Z

?
Y dP =

Z
?
�AdP = 0:

The function

Y (!) =

8<:
P (A\B)
P (B) ; ! 2 B;

P(A\BC)
P (BC)

; ! 2 BC :
(65)

is H-measurable, satis�es the equations, and �ts the de�nition.

Conditional expectation has many (more or less!) obvious properties. Most properties below

are also listed in Øksendal.

Property 1: The operation X ! E (XjH) is linear, that is, E (aX + bY jH) = aE (XjH) +
bE (Y jH).

Idea of proof:
R
H E (aX + bY jH) dP =

R
H (aX + bY ) dP = �ll in! =

R
H (aE (XjH) + bE (Y jH)) dP .

Property 2: If X (or rather HX ) and H are independent, then E (XjH) = EX (H
provides no useful information!).

Proof:

For any H 2 H; Z
H
E (XjH) dP =

Z
H
XdP =

Z


X�HdP

=

Z


XdP

Z


�HdP

= E (X) � P (H) =
Z
H
(EX) dP:

Note that this argument requires Eqn. 53.

Property 3: If Y is H-measurable, then

E (Y XjH) = Y E (XjH) : (66)

Idea of proof: First prove it when Y is a simple H-measurable function. The general result
follows from a limiting argument also given in Øksendal.

Property 4: If G � H � F , then E (XjG) = E (E (XjH) jG) :
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Idea of proof : Let G 2 G, thenZ
G
E (XjG) dP =

Z
G
XdP =

Z
G
E (XjH) dP =

Z
G
E (E (XjH) jG) dP (67)

since G 2 G � H. Since both E (XjG) and E (E (XjH) jG) are G-measurable, the equality of
the functions follows from Proposition 2 at the end of the previous chapter.

Property 5: If X (!) � 0 a.e., then E (XjH) (!) � 0 a.e.

Proof: Let A = f!; E (XjH) (!) < 0g:

0 �
Z
A
E (XjH) dP =

Z
A
XdP � 0: (68)

Thus,
R
AE (XjH) dP = 0. Note that A = [

1
n=1An where An = f! ; E (XjH) (!) < �1=ng.

However, P (An) has to be 0 for all n-s since

0 �
Z
An

XdP =

Z
An

E (XjH) dP � �P (An)
n

: (69)

But P (An)! P (A) by the properties of the measure.

Property 6: jE (XjH) (!)j � E (jXj jH) (!) a.e.

Proof: Write X = X+ �X� and use Property 5:

jE (XjH) (!)j =
��E �X+jH

�
(!)� E

�
X�jH

�
(!)
��

� E
�
X+jH

�
(!) +

��E �X�jH
�
(!)
�� (70)

= E (jXj jH) (!) : (71)

The following paragraph requires some knowledge of functional analysis.

Conditional expectation has an interesting connection with the best approximation. In fact,

E (XjH) is the best approximation of X given the information contained in H. The L2-case
is actually quite simple to verify:

Property 7: Let X 2 L2 (
;F ; P ) and H � F . Then E (XjH) is the best approximation in
(i.e. the projection onto) L2 (
;H; P ) :

Proof: LetM : L2 (
;F ; P )! L2 (
;H; P ) be the projection operator (recall that L2 (
;H; P )
is a closed subspace of L2 (
;F ; P )!). Since MX is H-measurable, we only have to verify
property 2 in the de�nition:Z

H
(MX) dP =

Z


�H (MX) dP

= h�H ;MXi = hM�H ; Xi (72)

= h�H ; Xi =
Z
H
XdP:

Hence, X ! E (XjH) is a continuous, linear mapping in L2. However, it turns out that
the mapping X ! E (XjH) is not continuous in L1(this is not obvious!). Nevertheless, if
Xn (!)! X (!) a.e. and jXn (!)j � h (!), h 2 L1, then E (XnjH)! E (XjH) a.e.
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8 Characteristic Functions

The characteristic function of a (univariate) stochastic variable X is de�ned as

�X (u) = E (exp (iuX)) : (73)

For a multivariate stochastic variable, X = (X1; � � � ; Xn)0, the characteristic function is a
function of n variables u = (u1; � � � ; un) 2 Rn de�ned as

�X (u) = E
�
exp

�
iu0X

��
=

Z
Rn
eiu

0xd�X (x) : (74)

This is thus the Fourier transform of the distribution of the variable. Since jexp (iu0X)j = 1
for real variables, the characteristic function always exists. If X has a probability density,

fX (x),

�X (u) = E
�
exp

�
iu0X

��
=

Z
Rn
eiu

0xfX (x) d
nx: (75)

Moreover, if �X (u) is an integrable function in Rn, then, by the inverse Fourier transform,

fX (x) =
1

(2�)n

Z
Rn
e�iu

0x�X (u) d
nu: (76)

(Note: It is customary to distinguish between Rn for x and u, and you will often see the
notation u 2 R̂n).

The characteristic function is a valuable tool when dealing with probability distributions.

One particular feature is an elegant way to obtain the expectation of combination of the

variables when we have an analytic expression for �X (u). In particular, we observe that

@�X
@uj

(0) =
@E (exp (iu0X))

@uj

����
u=0

= E (iXj) = iEXj (77)

(the interchange of the derivative and E needs some justi�cation we shall not go into). We

therefore �nd the expectations by taking the derivative of the characteristic function, instead

of an integration over the distribution for the variable. In general, this leads to the very

useful formula

E
�
Xn1
1 X

n2
2 � � �XnN

N

�
= i��jnj

@�jnj

@un11 @u
n2
2 @u

nN
N

�X (u)

����
u=0

: (78)

Often it is convenient to write �X (u) as a Taylor series expansion before the derivatives

are computed. The method is particularly e¢ cient for Gaussian variables which we consider

next.

9 Multivariate Gaussian Variables

Gaussian variables will play a central part throughout the course, and if multivariate Gaussian

variables are completely new to you, you should look at one of the standard textbooks in

Statistics, e.g. R. Johnson and D. Wichern: Applied statistical analysis, Prentice Hall.
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We recall that a stochastic variable X is Gaussian if it has a density of the form

fX (x) =
1p
2��

exp

 
�(x� �)

2

2�2

!
:

It follows by integration that EX = � and VarX = �2. The characteristic function of X is

�X (u) = exp

�
iu�� 1

2
�2u2

�
(79)

(You should try to compute integral in Eqn. 75. You may also consult a table of Fourier

transforms).

A multivariate stochastic variable X = (X1; � � � ; Xn)0 is said to be multivariate Gaussian if
all linear combinations of the form

Y =
nX
i=1

�iXi; �i 2 R; (80)

are Gaussian. This implies, in particular, that all components separately are Gaussian.

Proposition: If X is multivariate Gaussian, the characteristic function has the form

�X (u) = exp

�
iu0�� 1

2
u0�u

�
: (81)

Proof: Let Y =
Pn
i=1 uiXi = u

0X. Then E (Y ) =
Pn
i=1 ui�i = u

0�, and

VarY = E (Y � �)2

= E

0@ nX
i;j=1

uiuj (Xi � �i) (Xj � �j)

1A (82)

=

nX
i;j=1

uiuj�ij = u
0�u;

where � = f�ijg; �ij = Cov (Xi; Xj). The result follows by observing

�X (u) = E
�
exp

�
iu0X

��
= E (exp (iY ))

= �Y (1) = exp

�
iEY � 1

2
VarY

�
(83)

= exp

�
iu0�� 1

2
u0�u

�
:

In fact, if X = (X1; � � � ; Xn)0 has �nite means and variances and the characteristic function
has the form in Eqn. 81, then X is multivariate Gaussian (See Øksendal, Theorem A.5).

If � is non-singular it is positive de�nite, and hence

�min juj2 � u0�u (84)
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for the smallest eigenvalue �min > 0. Thus, �X will be integrable and X has a density

fX (x) =
1

(2�)n

Z
Rn
e�iu

0x exp

�
iu0�� 1

2
u0�u

�
dnu

=
1

(2�)n=2 j�j1=2
exp

�
�1
2
(x� �)0��1 (x� �)

�
: (85)

(This integral may a bit tricky: Introduce u = ��1=2y and note that the new integral with

respect to y splits into a product of n similar one-dimensional integrals. Then use the result

for the one-dimensional distribution).

Let us now assume that X is a zero mean multivariate Gaussian variable with covariance

matrix � so that

�X (u) = exp

�
�u

0�u

2

�
: (86)

For a single variable X with standard deviation 1, we obtain

E
�
Xk
�
= �i�k @

k�X
@uk

(0) = �i�k @
ke�

u2

2

@uk
(0) =

�
0; k odd

1 � 3 � � � � (k � 1) ; k even
(87)

For a bivariate zero mean Gaussian variable with

� =

�
�2 �
� �2

�
; (88)

the corresponding bivariate characteristic function is

� (u; v) = exp

�
�u

t�u

2

�
= exp

�
��

2u2 + 2�uv + �2v2

2

�
: (89)

Hence, as an illustration,

E
�
X2Y 2

�
=
@4E exp (i (uX + vY ))

@u2@v2

����
u;v=0

=
@4
�
exp

�
��2u2+2�uv+�2v2

2

��
@u2@v2

������
u;v=0

= �4 + 2�2

(use Maple, or expand the exponential to second order and keep only relevant terms).

The following two identities are often needed.

Problem 1: Assume E (X) = 0. Prove that

E (X1X2X3) = 0: (90)

Problem 2: Assume E (X) = 0: Prove the so-called fourth-cumulant identity :

E (X1X2X3X4) = E (X1X2)E (X3X4) + E (X1X3)E (X2X4) + E (X1X4)E (X2X3) : (91)

Additional properties of Gaussian variables are found in Øksendal, Appendix A.

We close this section with a very important property of multivariate Gaussian variables:
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Multivariate Gaussian variables fX1; � � � ; Xng are independent if and only if their covariance
matrix � = fCov (Xi; Xj)g is diagonal.

Thus, multivariate Gaussian variables are independent if all pairs of variables are uncorrelated

(and hence independent). It should be stressed that the multivariate Gaussian assumption

is required for this to be true. The proof is simply to observe that if � is diagonal, the joint

density splits into a product of the individual densities, which is the elementary de�nition of

independence (Strictly speaking, the statement is true even if some of the variables have 0

variance, since constants are independent of anything and may be removed in the proof).
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