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Exercise set 2

1 GNI II.6, Problem 1-4 and 6a, (no implemention required).

2 In GNI IV, Example 1.3, conservation of total linear and angular momentum is
discussed. Prove that in the case of a Kepler problem, with the Hamiltonian

H(p, q) =
1

2
pTM−1p− 1

‖q‖2
also the vector

A = p× L−M
q

‖q‖2
is conserved. Here, L = q × p is the angular momentum, q, p ∈ R3 and M ∈ R+ is
the mass of the body.

Hint: Use the identity x× (y × z) = (xT z)y − (xT y)z.

3 For a given Hamiltonian

H(p, q) =
1

2
p2+V (q)

the Hamiltons equations becomes

q′ = p, p′ = −V ′(q)

Use the Morse potential V (q) = (1− e−q)2. Solve this problem by the explicit Euler
method, RK4 (the classical 4th order method) and Störmer-Verlet’s method. Plot
the solution in the p− q plane. Examine the energy conservation H for the different
methods. Experiment with different stepsizes. As initial values, choose e.g. q0 = 1,
p0 = 1 and integrate from 0 to 20 (for example). You may very well also experiment
with different initial values.

4 Set up an extrapolation scheme based on the midpoint rule and the Romberg sequence

1, 2, 4, 8, 16, . . .

The numerical solution after a given number of extrapolation steps can be written
as a Runge-Kutta method. Write down the Butcher tableau for the 4th and 6th
order method. Will these methods preserve the geometric properties (symmetry,
conservation of quadratic invariants) of the original method?
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