Norwegian University of Science
and Technology
Department of Mathematical
Sciences

MA8404 Numerical
solution of time dependent differential equations
Autumn 2017

Exercise set 2

1 GNI II.6, Problem 1-4 and 6a, (no implemention required).

2 In GNI IV, Example 1.3, conservation of total linear and angular momentum is discussed. Prove that in the case of a Kepler problem, with the Hamiltonian

$$
H(p, q)=\frac{1}{2} p^{T} M^{-1} p-\frac{1}{\|q\|_{2}}
$$

also the vector

$$
A=p \times L-M \frac{q}{\|q\|_{2}}
$$

is conserved. Here, $L=q \times p$ is the angular momentum, $q, p \in \mathbb{R}^{3}$ and $M \in \mathbb{R}^{+}$is the mass of the body.
Hint: Use the identity $x \times(y \times z)=\left(x^{T} z\right) y-\left(x^{T} y\right) z$.

3 For a given Hamiltonian

$$
H(p, q)=\frac{1}{2} p^{2}+V(q)
$$

the Hamiltons equations becomes

$$
q^{\prime}=p, \quad p^{\prime}=-V^{\prime}(q)
$$

Use the Morse potential $V(q)=\left(1-e^{-q}\right)^{2}$. Solve this problem by the explicit Euler method, RK4 (the classical 4th order method) and Störmer-Verlet's method. Plot the solution in the $p-q$ plane. Examine the energy conservation H for the different methods. Experiment with different stepsizes. As initial values, choose e.g. $q_{0}=1$, $p_{0}=1$ and integrate from 0 to 20 (for example). You may very well also experiment with different initial values.

4 Set up an extrapolation scheme based on the midpoint rule and the Romberg sequence

$$
1,2,4,8,16, \ldots
$$

The numerical solution after a given number of extrapolation steps can be written as a Runge-Kutta method. Write down the Butcher tableau for the 4 th and 6 th order method. Will these methods preserve the geometric properties (symmetry, conservation of quadratic invariants) of the original method?

