TMA4100 Øving 1

August 23, 2012

Exercise 1.5.59

Find a formula for the inverse function f^{-1} and verify that $\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=$ x.
(a)

$$
f(x)=\frac{100}{1+2^{-x}}
$$

(b)

$$
f(x)=\frac{50}{1+1.1^{-x}}
$$

Exercise 2.1.3

Find the average rate of change of the function $h(t)=\cot t$ over the intervals
(a)

$$
[\pi / 4,3 \pi / 4], \text { and }
$$

(b)

$$
[\pi / 6, \pi / 2] .
$$

Exercise 2.3.20

We have

$$
f(x)=\sqrt{x-7}, \quad L=4, \quad x_{0}=23, \quad \epsilon=1 .
$$

First, find an open interval about x_{0} on which the inequality $|f(x)-L|<\epsilon$ holds. Then give a value for $\delta>0$ such that for all x satisfying $0<\left|x-x_{0}\right|<\delta$ the inequality $|f(x)-L|<\epsilon$ holds.

Exercise 2.3.53

Show by example that the following statement is wrong: The number L is the limit of $f(x)$ as x approaches x_{0} if $f(x)$ gets closer to L as x approaches x_{0}.

Explain why the function in your example does not have the given value of L as a limit as $x \rightarrow x_{0}$.

Exercise 2.5.35

Graph the rational function

$$
y=\frac{x^{2}-4}{x-1}
$$

Include the graphs and equations of its asymptotes.

Exercise 2.6.39

For what value of a is

$$
f(x)= \begin{cases}x^{2}-1, & x<3 \\ 2 a x, & x \geq 3\end{cases}
$$

continuous at every x ?

Exercise 2.6.46

Explain why the equation $\cos x=x$ has at least one solution.

Exercise 2.7.34

Does the graph

$$
g(x)= \begin{cases}x \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

have a tangent at the origin? Give reasons for your answer.

Exercise 3.2.53

The curve $y=a x^{2}+b x+c$ passes through the point $(1,2)$ and is tangent to the line $y=x$ at the origin. Find a, b and c.

Exercise 3.3.13

Had Galileo dropped a cannonball from the Tower of Pisa, 179 ft above the ground, the ball's height above the ground t sec into the fall would have been

$$
s=179-16 t^{2} .
$$

a) What would have been the ball's velocity, speed and acceleration at time t ?
b) About how long would it have taken the ball to hit the ground?
c) What would have been the ball's velocity at the moment of impact?

Exercise 3.4.25

Find $y^{\prime \prime}$ if

1. $y=\csc x$.
2. $y=\sec x$.

Exercise 3.5.97

Find a parametrization for the lower half of the parabola $x-1=y^{2}$.

Exercise 3.6.2

Use implicit differentiation to find $d y / d x$ when

$$
x^{3}+y^{3}=18 x y
$$

Exercise 3.6.32

Verify that the point $(-2,1)$ is on the curve

$$
y^{2}-2 x-4 y-1=0
$$

and find the lines that are (a) tangent and (b) normal to the curve at the given point.

Exercise 3.7.9

Suppose that the differentiable function $y=f(x)$ has an inverse and that the graph of f passes through the point $(2,4)$ and has a slope of $1 / 3$ there. Find the value of $d f^{-1} / d x$ at $x=4$.

Exercise 3.8.13

Find the limit

$$
\lim _{x \rightarrow 1^{-}} \sin ^{-1} x
$$

