Some good commands for derivatives, differentiability, and the chain rule

[If something goes bad, use
[> restart;
LLoad the 'VectorCalculus' package - good for many things in this and other math courses:
-> with(VectorCalculus);
[\&x, '*’, '+ , $\because-`, ~ `,<,>,<\mid>$, About, AddCoordinates, ArcLength, BasisFormat,
Binormal, Compatibility, ConvertVector, CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, GetNames, GetPVDescription, GetRootPoint, GetSpace, Gradient, Hessian, IsPositionVector, IsRootedVector, Is VectorField, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, Norm, Normalize, PathInt, PlotPositionVector, PlotVector, PositionVector, PrincipalNormal, RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinateParameters, SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, Tangent, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff, eval, evalVF, int, limit, series]
[Define a function of, say, two variables. Although $w(x, y):=x^{\wedge} 2+y^{\wedge} 2$ is more precise, $w:=x^{\wedge} 2+y^{\wedge} 2$ is both correct and short.
$>\mathrm{w}:=\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2$;

$$
\begin{equation*}
w:=x^{2}+y^{2} \tag{2}
\end{equation*}
$$

[Now, to compute the gradient of w with respect to the variables (x, y):
"> Gradient (w, $\mathrm{x}, \mathrm{y}]$);

$$
\begin{equation*}
2 x \bar{e}_{x}+2 y \bar{e}_{y} \tag{3}
\end{equation*}
$$

The directional derivative in the direction $\mathrm{v}=(1,0)$ with respect to the variables $(\mathrm{x}, \mathrm{y})-$ which of course coincides with the first partial derivative:
> DirectionalDiff(w, <1,0>,[x,y]);

$$
\begin{equation*}
2 x \tag{4}
\end{equation*}
$$

Note that in Maple the vector v does not need to be normalized to unit size, whereas it has to if you do the calculation by hand. For example, the directional derivative in the direction $(1,2)$:
$\overline{=}>$ DirectionalDiff $(\mathrm{w},<1,2>,[\mathrm{x}, \mathrm{y}])$;

$$
\begin{equation*}
\frac{2}{5} x \sqrt{5}+\frac{4}{5} y \sqrt{5} \tag{5}
\end{equation*}
$$

To avoid the repeating terms in the above expression, one can always try factor (\%) ;

$$
\begin{equation*}
\frac{2}{5} \sqrt{5}(x+2 y) \tag{6}
\end{equation*}
$$

To see the chain rule in action, use the 'eval' command (for 'evalute') to define a function F depending on t by $\mathrm{F}(\mathrm{t})=\mathrm{w}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$:
[>F:= $\operatorname{eval}(w,[x=x(t), y=y(t)]) ;$

$$
\begin{equation*}
F:=x(t)^{2}+y(t)^{2} \tag{7}
\end{equation*}
$$

Then differentiate it with respect to t :
> diff(F,t);

$$
\begin{equation*}
2 x(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t} x(t)\right)+2 y(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t} y(t)\right) \tag{8}
\end{equation*}
$$

=If the functions $x(t)$ and $y(t)$ are known, like if $x(t)=t \cos (t), y(t)=t \sin (t)$, one can calculate this as well (the command 'simplify' can always be tried when one expects it may do some good).
$\overline{>} \boldsymbol{F}:=\operatorname{eval}(\mathrm{w},[\mathrm{x}=\mathrm{t} * \cos (\mathrm{t}), \mathrm{y}=\mathrm{t} * \sin (\mathrm{t})]) ; \operatorname{diff(F,t);~simplify(\%);~}$

$$
\begin{gather*}
F:=t^{2} \cos (t)^{2}+t^{2} \sin (t)^{2} \\
2 t \cos (t)^{2}+2 t \sin (t)^{2} \\
2 t \tag{9}
\end{gather*}
$$

[Finally, to evalute the derivative of $\mathrm{F}(\mathrm{t})$ at a point $\mathrm{t}=3$, just use 'eval' as above:

$$
\begin{array}{lc}
\lceil>\operatorname{diff}(F, t) ; & 2 t \cos (t)^{2}+2 t \sin (t)^{2} \\
\gg \text { eval }(\%, t=3) ; & 6 \cos (3)^{2}+6 \sin (3)^{2} \\
&
\end{array}
$$

FFinally: Don't do all this for the function $\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2$. But do use it to play around and check your calculations for more complicated expressions. It can save you much time throughout your studies!

