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Solutions to exercise set 4

1 We use elementary row operations to compute the reduced echelon form. The op-
erations are listed. The pivot positions in the final matrix are circled, as well as the
pivot posiotions of the original matrix. The pivot columns are columns 1, 2 and 3. 1 2 4 5

2 4 5 4
4 5 4 2

 ∼
1 2 4 5

0 0 −3 −6
4 5 4 2

 row2 −2· row1

∼

1 2 4 5
0 0 −3 −6
0 −3 −12 −18

 row3 −4·row1

∼

1 2 4 5
0 −3 −12 −18
0 0 −3 −6

 swap row2 and row3

∼

1 2 4 5
0 1 4 6
0 0 −3 −6

 scale row2 with −1
3

∼

1 2 4 5
0 1 4 6
0 0 1 2

 scale row3 with −1
3

∼

1 2 4 5
0 1 0 −2
0 0 1 2

 row2 −4· row3

∼

1 2 0 −3
0 1 0 −2
0 0 1 2

 row1 −4· row3

∼

 1 0 0 1
0 1 0 −2
0 0 1 2

 row1 −2· row2

2 We have a system with three unknowns and two equations. The augmented matrix
of the system is [

1 −1 −1 2
−2 4 2 6

]
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By elementary row operations, the system is reduced to[
1 0 −1 7
0 1 0 5

]
We see that x1 = 7 + x3 and x2 = 5. We have no restrictions on x3, so this is a free
variable.

3 The given differential equation is y′′ + 4y′ + 4y = t−2e−2t. We use the technique of
chapter 4.6.

The characteristic polynomial is λ2 + 4λ + 4 = (λ + 2)2, so λ = −2 is the only
characteristic root. It follows that yh(t) = c1e−2t + c2te−2t is the general solution to
the homogeneous equation y′′ + 4y′ + 4y = 0.

Let yp(t) = v1(t)e−2t + v2(t)te−2t. Then y′p(t) = v′1(t)e
−2t− 2v1(t)e−2t + v′2(t)te

−2t +

v2(t)e−2t − 2v2(t)te−2t. We assume that v′1(t)e
−2t + v′2(t)te

−2t = 0. Then y′p(t) =

−2v1(t)e−2t + v2(t)e−2t − 2v2(t)te−2t and

y′′p(t) + 4y′p(t) + 4yp(t) = −2v′1(t)e
−2t + 4v1(t)e−2t + v′2(t)e

−2t − 2v2(t)e−2t

− 2v′2(t)te
−2t − 2v2(t)e−2t + 4v2(t)te−2t − 8v1(t)e−2t

+ 4v2(t)e−2t − 8v2(t)te−2t + 4v1(t)e−2t + 4v2(t)te−2t

= −2v′1(t)e
−2t + v′2(t)(1− 2t)e−2t.

So yp is a partial solution if v′1(t)e
−2t + v′2(t)te

−2t = 0 and −2v′1(t)e
−2t + v′2(t)(1−

2t)e−2t = t−2e−2t. Since e−2t 6= 0 this is equivalent to v′1(t) + v′2(t)t = 0 and
−2v′1(t) + v′2(t)(1− 2t) = t−2.

The solution to the system

v′1(t) + v′2(t)t = 0

−2v′1(t) + v′2(t)(1− 2t) = t−2

is v′1(t) = −t−1 and v′2(t) = t−2, so if

v1(t) = −
∫

t−1 dt = − ln(t)

and
v2(t) =

∫
t−2 dt = −1

t
then yp(t) = v1(t)e−2t + v2(t)te−2t = − ln(t)e−2t − e−2t is a partial solution. It
follows that y(t) = yp(t) + yh(t) = c1e−2t + c2te−2t − ln(t)e−2t − e−2t is the general
solution.

4 We have the equation
y′′ + 2y′ + 4y = 4 cos(2t) (1)

The characteristic function is P(λ) = λ2 + 2λ + 4, ω = 2 and the transfer function
is

H(iω) = H(2i) =
1

P(2i)
=

1
(2i)2 + 2(2i) + 4

=
1

−4 + 4i + 4
=

1
4i

=
−i
4
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So z(t) = H(iω)4e2it = −ie2it is a solution to the equation z′′ + 2z′ + 4 = 4e2it. It
follows that y(t) = Re(z(t)) = −Re(ie2it) = sin(2t) is the steady-state solution to
y′′ + 2y′ + 4y = 4 cos(2t).
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