

1 We have $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$, and the task is to determine whether the set is linearly independent or linearly dependent. It is linearly independent if and only if the equation $a\mathbf{v_1} + b\mathbf{v_2} + c\mathbf{v_3} = 0$, where *a*, *b*, *c* are scalars, has only the trivial solution a = b = c = 0.

We reduce the augmented matrix of the vector equation:

[1]	3	5	0		[1	0	-1	0]
2	-1	-4	0	\sim	0	1	2	0
3	0	3	0		0	0	0	0

c is a free variable, and the system has infinitely many solutions. For instance, if we chose c = -1, we get a = 1 and b = -2, and we can write \mathbf{v}_3 as $\mathbf{v}_3 = \mathbf{v}_1 - 2\mathbf{v}_2$. The set is linearly dependent.

2 The standard matrix of *T* is of the form $[T(\mathbf{e_1}) \ T(\mathbf{e_2}) \ T(\mathbf{e_3}) \ T(\mathbf{e_4})]$. We compute

$$T(\mathbf{e_3}) = \begin{bmatrix} 1\\0\\2 \end{bmatrix} \quad T(\mathbf{e_2}) = \begin{bmatrix} 4\\1\\9 \end{bmatrix} \quad T(\mathbf{e_3}) = \begin{bmatrix} -1\\2\\0 \end{bmatrix} \quad T(\mathbf{e_4}) = \begin{bmatrix} 3\\-1\\5 \end{bmatrix}$$

Hence the standard matrix is

$$A = \begin{bmatrix} 1 & 4 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 2 & 9 & 0 & 5 \end{bmatrix}$$

This can also be done "by inspection", as in Example 5 on page 77.

3 *T* is the linear transformation from Problem 2, so we have the standard matrix

$$A = \begin{bmatrix} 1 & 4 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 2 & 9 & 0 & 5 \end{bmatrix}$$

According to Theorem 12, page 77, *T* is onto if and only if the columns of *A* span \mathbb{R}^3 . This happens if and only if *A* has a pivot position in each row. We reduce *A* and get

$$A = \begin{bmatrix} 1 & 4 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 2 & 9 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A does not have a pivot position in the third row, and hence the columns does not span \mathbb{R}^3 . Then *T* is not onto.

4 We draw a picture of the migration (*C* means city and *S* means suburbs):

$$0.90 \bigcirc C \xrightarrow[]{0.10} S \bigcirc 0.80$$

The migration matrix is given by

$$M = \begin{bmatrix} 0.90 & 0.20\\ 0.10 & 0.80 \end{bmatrix}$$

and the population in 2010 is given by

$$\mathbf{x_0} = \begin{bmatrix} 200,000\\ 100,000 \end{bmatrix}$$

We are supposed to find x_2 , i.e. the population vector for 2012. We have that

$$\mathbf{x_1} = M\mathbf{x_0} = \begin{bmatrix} 0.90 & 0.20\\ 0.10 & 0.80 \end{bmatrix} \cdot \begin{bmatrix} 200,000\\ 100,000 \end{bmatrix} = \begin{bmatrix} 200,000\\ 100,000 \end{bmatrix}$$

The number of people living in each region does not change from one year to the next, and hence $x_2 = x_1 = x_0$.

(See pages 84–85 in the book for more details.)