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5.1 Eigenvectors and Eigenvalues

6. Is

 1
−2
1

 an eigenvector of

3 6 7
3 3 7
5 6 5

? If so, find the eigenvalue.

7. Is λ = 4 an eigenvalue of

 3 0 −1
2 3 1
−3 4 5

? If so, find one corresponding eigenvector.

9. Find a basis for the eigenspace corresponding to each listed eigenvalue.

A =

[
5 0
2 1

]
, λ = 1, 5

21. A is an n× n matrix. Mark each statement True of False. Justify each answer.

a. If Ax = λx for some vector x, then λ is an eigenvalue of A.

b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.

c. A number c is an eigenvalue of A if and only if the equation (A − cI)x = 0 has a
nontrivial solution.

d. Finding an eigenvector of A may be difficult, but checking whether a given vector is
in fact an eigenvector is easy.

e. To find the eigenvalue of A, reduce A to echelon form.

23. (Optional Extra) Explain why a 2×2 matrix can have at most two distinct eigenvalues.
Explain why an n× n matrix can have at most n distinct eigenvalues.

(Optional Extra) In Exercises 31 and 32, let A be the matrix of the linear transformation
T . Without writing A, find an eigenvalue of A and describe the eigenspace.
31. (Optional Extra) T is the transformation on R2 that reflects points across some line
through the origin.

32. (Optional Extra) T is the transformation on R3 that rotates points about some line
through the origin.
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5.2 The Characteristic Equation

Find the characteristic polynomial and the eigenvalues of the matrices in Exercise 1 and
5 (Optional Extra)
1. [

2 7
7 2

]

5. (Optional Extra) [
2 1
−1 4

]

11. This Exercise require techniques from Section 3.1. Find the characteristic polynomial
of the matrix using either a cofactor expansion or the special formula for 3×3 determinants
described prior to Exercises 15-18 in Section 3.1 (Note: Finding the characteristic polyno-
mial of a 3 × 3 matrix is not easy to do with just row operations, because the variable λ
is involved.)  4 0 0

5 3 2
−2 0 2



15. List the eigenvalues, repeated according to their multiplicities.
4 −7 0 2
0 3 −4 6
0 0 3 −8
0 0 0 1



24. (Optional Extra) Show that if A and B are similar, then detA = detB.

25. Let A =

[
.6 .3
.4 .7

]
,v1 =

[
3/7
4/7

]
,x0 =

[
.5
.5

]
. (Note: A is the stochastic matrix studied in

Example 5 of section 4.9.)

a. Find a basis for R2 consisting of v1 and another eigenvector v2 of A.

b. Verify that x0 may be written in the form x0 = v1 + cv2.

c. For k = 1, 2, . . . , define xk = Akx0. Compute x1 and x2, and write a formula for xk.
Then show that xk → v1 as k increases.
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18. (Optional Extra) It can be shown that the algebraic multiplicity of an eigenvalue λ is
always greater of equal to the dimension of the eigenspace corresponding to λ. Find h in
the matrix A below such that the eigenspace for λ = 5 is two-dimensional:

5 −2 6 −1
0 3 h 0
0 0 5 4
0 0 0 1



19. (Optional Extra) Let A be an n × n matrix, and suppose A has n real eigenvalues,
λ1, . . . , λn, repeated according to multiplicities, so that

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Explain why detA is the product of the n eigenvalues of A. (This result is true for any
square matrix when complex eigenvalues are considered.)

27. (Optional Extra) Let

A =

.5 .2 .3
.3 .8 .3
.2 0 .4

 ,v1 =

.3.6
.1

 ,v2 =

 1
−3
2

 ,v3 =

−1
0
1

 , and w =

1
1
1

 .
a. Show that v1, v2 and v3 are eigenvectors of A. (Note: A is the stochastic matrix

studied in Example 3 of Section 4.9.)

b. Let x0 be any vector in R3 with nonnegative entries whose sum is 1. (In Section 4.9,
x0 was called a probability vector.) Explain Why there are constants c1, c2, and c3
such that x0 = c1v1 + c2v2 + c3v3. Compute wTx0, and deduce that c1 = 1.

c. For k = 1, 2, . . . , define xk = Akx0, with x0 as in part (b). Show that xk → v1 as k
increases.

5.3 Diagonalization

1. Let A = PDP−1 and compute A4.

P =

[
5 7
2 3

]
, D =

[
2 0
0 1

]

5. The matrix A is factored in the form PDP−1. Use the Diagonalization Theorem to find
the eigenvalues of A and a basis for each eigenspace.2 2 1

1 3 1
1 2 2

 =

1 1 2
1 0 −1
1 −1 0

5 0 0
0 1 0
0 0 1

1/4 1/2 1/4
1/4 1/2 −3/4
1/4 −1/2 1/4
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Diagonalize the matrices in Exercise 7 and 12 (Optional Extra), if possible.
7. [

1 0
6 −1

]

12. (Optional Extra) The eigenvalues for the matrix are λ = 2, 84 2 2
2 4 2
2 2 4


31. (Optional Extra) Construct a nonzero 2× 2 matrix that is invertible but not diagona-
lizable.

32. (Optional Extra) Construct a nondiagonal 2× 2 matrix that is diagonalizable, but not
invertible.

5.5 Complex Eigenvalues

1. Let the
[
1 −2
1 3

]
act on C2. Find the eigenvalues and a basis for each eigenspace in C2.

7. Use Example 6 to list the eigenvalues of A. In each case, the transformation x 7→ Ax
is the composition of a rotation and a scaling. Give the angle φ of the rotation, where
−π ≤ φ ≤ π, and give the scale factor r.

A =

[√
3 −1

1
√

3

]

13. (Optional Extra) Find an invertible matrix P and a matrix C on the form
[
a −b
b a

]
such that the given matrix has the form A = PCP−1. Use the information from Exercise
1.

A =

[
1 −2
1 3

]

Chapter 7 will focus on matrices A with the property that AT = A. Exercises 23 and 24
show that every eigenvalue of such a matrix is necessarily real.
23. (Optional Extra) Let A be an n× n real matrix with the property that AT = A, let x
be any vector in Cn, and let q = x̄TAx. The equalities below show that q is a real number
by verifying that q̄ = q. Give a reason for each step.

q̄ = x̄TAx
(a)
= xTAx

(b)
= xTAx̄

(c)
= (xTAx̄)T

(d)
= x̄TATx

(e)
= q

24. (Optional Extra) Let A be an n×n real matrix with the property that AT = A. Show
that if Ax = λx for some nonzero vector x in Cn, then, in fact, λ is real and the real part
of x is an eigenvector of A. (Hint: Compute x̄TAx, and use Exercise 23. Also, examine
the real and imaginary parts of Ax.)
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