

TMA4115 MATEMATIKK 3 Midterm (ungraded)

How many solutions of the equation $z^5 = 1 - i$ have positive Problem 1 imaginary part?

A: 1

B: 2

C: 3

D: 5

Problem 2 Consider the equation

$$y'' + 25y = 2x\cos 5x.$$

Which of the following families of functions contains a particular solution of this ODE?

A: $A_0 \cos 5x + B_0 \sin 5x$, $(A_0, B_0 \text{ not both zero})$

B: $(A_1x + A_0)\cos 5x + (B_1x + B_0)\sin 5x$, $(A_1, B_1 \text{ not both zero})$

C: $(A_2x^2 + A_1x + A_0)\cos 5x + (B_2x^2 + B_1x + B_0)\sin 5x$, $(A_2, B_2 \text{ not both zero})$

D: $(A_3x^3 + A_2x^2 + A_1x + A_0)\cos 5x + (B_3x^3 + B_2x^2 + B_1x + B_0)\sin 5x$, $(A_3, B_3 \text{ not both zero})$

Problem 3 For which value of k will the solutions of the equation

$$y'' + ky' + 16y = 0$$

have infinitely many zeros?

A: k > 8 B: k < 8 C: k > -8 D: -8 < k < 8

Problem 4 Let $y_1(x), y_2(x)$ be solutions of y'' - 2y' + 2y = 0 with Wronski determinant $W(y_1, y_2) = W(x)$. If W(0) = 2, what is W(1)?

A:
$$2e^2$$

B:
$$3e^2$$

B:
$$3e^2$$
 C: $2e^{-2}$

D:
$$3e^{-2}$$

Problem 5 For which a does the linear system

$$x_1 + x_2 + 2x_3 = a$$

 $x_1 + 2x_2 + 3x_3 = 1$
 $2ax_2 + 4x_3 = a^2$

have infinitely many solutions?

B:
$$a = 2 \text{ and } a = 0$$

C:
$$a = 2$$
 D: $a = 0$

D:
$$a = 0$$

Let $A = \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 6 \\ 8 & 7 \end{bmatrix}$, what is $(AB)^{-1}$? Problem 6

A:
$$\begin{bmatrix} -39 & -10 \\ -20 & -9 \end{bmatrix}$$
D:
$$\begin{bmatrix} -5 & -4 \\ 6 & 5 \end{bmatrix}$$

$$B: \begin{bmatrix} 9 & -8 \\ 10 & 9 \end{bmatrix}$$

B:
$$\begin{bmatrix} 9 & -8 \\ 10 & 9 \end{bmatrix}$$
 C: $\begin{bmatrix} 5 & 4 \\ -6 & -5 \end{bmatrix}$