12.19The invertible matrix theorem

The following conditions are equivalent for an $n \times n$ -matrix A:

- (a) A is invertible,
- (b) for all $\overrightarrow{b} \in \mathbb{R}^n$ the equation $A\overrightarrow{x} = \overrightarrow{b}$ has a solution,
- (c) the columns of A span \mathbb{R}^n ,

(d)
$$T_A \colon \mathbb{R}^n o \mathbb{R}^n, \, \overrightarrow{x} \mapsto A \, \overrightarrow{x}$$
 is onto,

- (e) A has a pivot position in every column,
- (f) the reduced echelon form of A is I_n ,
- (g) $A\overrightarrow{x} = \overrightarrow{0}$ has a unique solution,
- (h) the columns of A are linearly independent,
- (i) T_A is one-to-one,
- (j) there is an $n \times n$ matrix D with $AD = I_n$,
- (k) there is an $n \times n$ matrix D with $DA = I_n$

Proof: Parts already seen in the lecture, see also textbook p. 112.