The invertible matrix theorem continued

The following statements are equivalent for an $n \times n$-matrix A to be invertible. Hence they complement 12.19:
(I) The columns of A form a basis of \mathbb{R}^{n},
(m) $\operatorname{Col}(A)=\mathbb{R}^{n}$
(n) $\operatorname{rank} A=\operatorname{dim} \operatorname{Col}(A)=n$
(o) $\operatorname{Nul}(A)=\{\overrightarrow{0}\}$
(p) $\operatorname{dim} \operatorname{Nul}(A)=0$.
(r) $\operatorname{det}(A) \neq 0$

