TMA 4115 Matematikk 3
 MTEL, MTENERG, MTIØT, MTTK

Alexander Schmeding

NTNU

7. April 2014

Least square solutions

Let A be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$. A vector $\mathbf{y} \in \mathbb{R}^{n}$ is called least square solution of $A \mathbf{x}=\mathbf{b}$ if

$$
\|\mathbf{b}-A \mathbf{y}\| \leq\|\mathbf{b}-A \mathbf{x}\|, \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

Note: A vector \mathbf{y} is a least square solution if and only if

- $A \mathbf{y}=\operatorname{proj}_{C o l}(A)(\mathbf{b})$
- It solves the normal equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$

For every linear system there is a least square solution. If the system is inconsistent a least square solution is the best approximate solution we can get.

Weight of baggage

We want to know the weight x of our suitcase.
If it is too heavy we have to pay extra on the airplane and we don't want that.

Second scale

weight $x=x_{1} \mathrm{~kg}$ weight $x=x_{2} \mathrm{~kg} \quad$ weight $x=x_{3} \mathrm{~kg}$ What is the weight of our suitcase?

Weight of baggage II

From our scales we have the information:

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leftrightarrow \begin{cases}x & =x_{1} \\
x & =x_{2} \\
x & =x_{3}\end{cases}
$$

Unless $x_{1}=x_{2}=x_{3}$ holds (by chance), the linear system is inconsistent, i.e. there is no exact solution.

Problem: We want an "approximate" solution. This means a number y such that the errors $\left|x_{i}-y\right|$ are as small as possible.

Weight of baggage III

Idea: If $A \mathbf{x}=\mathbf{b}$ is inconsistent, approximate solution means an \mathbf{x} such that $A \mathbf{x}$ is as near as possible to the target vector \mathbf{b}.

Ax minimizes the distance to \mathbf{b} if it is $\operatorname{proj}^{\operatorname{Col}(A)(\mathbf{b})!}$ This is in the column space, and we can then solve $A \mathbf{x}=\operatorname{proj}_{\operatorname{CoI}(A)}(\mathbf{b})$.

In our example with $A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, we set $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and
obtain

$$
\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
\frac{x_{1}+x_{2}+x_{3}}{3} \\
\frac{x_{1}+x_{2}+x_{3}}{3} \\
\frac{x_{1}+x_{2}+x_{3}}{3}
\end{array}\right]
$$

Thus $A x=\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$ shows: $x=\frac{x_{1}+x_{2}+x_{3}}{3}$.

Application for Least squares I

Spring 2011 Problem 5

Let $A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$. Find the nearest
point in $\operatorname{Col}(A)$ to \mathbf{b}.
Recall: If \mathbf{y} is a least square solution, then $A \mathbf{y}$ is the nearest point to \mathbf{b} ! Try to solve the normal equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. However, we obtain

$$
A^{T} A=\left[\begin{array}{cccc}
6 & 6 & 12 & -6 \\
6 & 11 & 7 & -1 \\
12 & 7 & 29 & -17 \\
-6 & -1 & -17 & 11
\end{array}\right]
$$

Can we simplify the problem so that we do not need $A^{T} A$?

Application for least squares II

Idea: The column space $\operatorname{Col}(A)$ is important not the matrix A ! Use the method with an easier matrix B with $\operatorname{Col}(B)=\operatorname{Col}(A)$.

One computes that $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]$ is a basis of $\operatorname{Col}(A)$.Set $B=\left[\begin{array}{cc}1 & 3 \\ 2 & 1 \\ -1 & -1\end{array}\right]$ and compute with $B:$

$$
B^{T} B=\left[\begin{array}{ll}
6 & 6 \\
6 & 5
\end{array}\right], B^{T} \mathbf{b}=\left[\begin{array}{c}
12 \\
7
\end{array}\right]
$$

Solving $B^{T} B \mathbf{x}=B^{T} \mathbf{b}$ yields the least square solution $\left[\begin{array}{c}3 \\ -1\end{array}\right]$

Application for least squares III

Now the nearest point to \mathbf{b} in $\operatorname{Col}(A)=\operatorname{Col}(B)$ is

$$
B\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right]
$$

as before!
Remark We can compute nearest points in a subspace by solving least square problems.

An easy way to solve the last example?

If we are given an orthogonal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ for a subspace W the nearest point to $\mathbf{b} \in \mathbb{R}^{n}$ is given by

$$
\operatorname{proj}_{W}(\mathbf{b})=\frac{\mathbf{b} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{b} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{\mathbf{p}}=\sum_{i=1}^{p} \frac{\mathbf{b} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \mathbf{u}_{\mathbf{i}}
$$

So if we know an orthogonal basis (for the column space) its easy to solve the problem:

Spring 2011 Problem 5
Let $A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$. Find the nearest
point in $\operatorname{Col}(A)$ to \mathbf{b}.
We will now investigate how such a basis can be constructed.

The Gram-Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^{n}$. Define

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \vdots=\quad \vdots \\
& \vdots \\
& \mathbf{v}_{p}=\mathbf{x}_{p}-\sum_{i=1}^{p-1} \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W and in addition $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \quad$ for $1 \leq k \leq p$

