TMA 4115 Matematikk 3 MTEL, MTENERG, MTIØT, MTTK

Alexander Schmeding

NTNU

7. April 2014

Least square solutions

Let A be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. A vector $\mathbf{y} \in \mathbb{R}^n$ is called least square solution of $A\mathbf{x} = \mathbf{b}$ if

$$\|\mathbf{b} - A\mathbf{y}\| \le \|\mathbf{b} - A\mathbf{x}\|, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Note: A vector y is a least square solution if and only if

•
$$A\mathbf{y} = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$$

• It solves the normal equation $A^T A \mathbf{x} = A^T \mathbf{b}$

For every linear system there is a least square solution. If the system is inconsistent a least square solution is the best approximate solution we can get.

Weight of baggage

We want to know the weight x of our suitcase.

If it is too heavy we have to pay extra on the airplane and we don't want that.

weight $x = x_1 \text{kg}$ weight $x = x_2 \text{kg}$ weight $x = x_3 \text{kg}$

What is the weight of our suitcase?

Weight of baggage II

From our scales we have the information:

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} x = \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} \leftrightarrow \begin{cases} x = x_1\\x = x_2\\x = x_3 \end{cases}$$

Unless $x_1 = x_2 = x_3$ holds (by chance), the linear system is **inconsistent**, i.e. there is no exact solution.

Problem: We want an "approximate" solution. This means a number y such that the errors $|x_i - y|$ are as small as possible.

Weight of baggage III

Idea: If $A\mathbf{x} = \mathbf{b}$ is inconsistent, approximate solution means an \mathbf{x} such that $A\mathbf{x}$ is as near as possible to the target vector \mathbf{b} .

 $A\mathbf{x}$ minimizes the distance to **b** if it is $\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$! This is in the column space, and we can then solve $A\mathbf{x} = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$.

In our example with
$$A = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$, we set $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and obtain

$$\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b}) = \frac{\mathbf{b} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} \frac{x_1 + x_2 + x_3}{3}\\\frac{x_1 + x_2 + x_3}{3}\\\frac{x_1 + x_2 + x_3}{3} \end{bmatrix}$$
Thus $Ax = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$ shows: $x = \frac{x_1 + x_2 + x_3}{3}$.

Application for Least squares I

Spring 2011 Problem 5

Let
$$A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$. Find the nearest point in Col(A) to \mathbf{b} .

Recall: If **y** is a least square solution, then A**y** is the nearest point to **b**! Try to solve the normal equation $A^T A$ **x** = A^T **b**. However, we obtain

$$A^{\mathsf{T}}A = \begin{bmatrix} 6 & 6 & 12 & -6 \\ 6 & 11 & 7 & -1 \\ 12 & 7 & 29 & -17 \\ -6 & -1 & -17 & 11 \end{bmatrix}.$$

Can we simplify the problem so that we do not need $A^T A$?

Application for least squares II

Idea: The column space Col(A) is important not the matrix A! Use the method with an easier matrix B with Col(B) = Col(A).

One computes that
$$\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$
 and $\begin{bmatrix} 3\\1\\-1 \end{bmatrix}$ is a basis of Col(A).Set
 $B = \begin{bmatrix} 1 & 3\\2 & 1\\-1 & -1 \end{bmatrix}$ and compute with B:
 $B^{T}B = \begin{bmatrix} 6 & 6\\6 & 5 \end{bmatrix}, B^{T}\mathbf{b} = \begin{bmatrix} 12\\7 \end{bmatrix}$

Solving $B^T B \mathbf{x} = B^T \mathbf{b}$ yields the least square solution $\begin{vmatrix} 3 \\ -1 \end{vmatrix}$

Application for least squares III

Now the nearest point to **b** in Col(A) = Col(B) is

$$B\begin{bmatrix}3\\-1\end{bmatrix} = \begin{bmatrix}0\\5\\-2\end{bmatrix}$$

as before!

Remark We can compute nearest points in a subspace by solving least square problems.

An easy way to solve the last example?

If we are given an orthogonal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ for a subspace W the nearest point to $\mathbf{b} \in \mathbb{R}^n$ is given by

$$\operatorname{proj}_{W}(\mathbf{b}) = \frac{\mathbf{b} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} + \dots + \frac{\mathbf{b} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p} = \sum_{i=1}^{p} \frac{\mathbf{b} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \mathbf{u}_{i}$$

So if we know an orthogonal basis (for the column space) its easy to solve the problem:

Spring 2011 Problem 5

Let
$$A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$. Find the nearest point in Col(A) to \mathbf{b} .

We will now investigate how such a basis can be constructed.

The Gram-Schmidt Process

Let $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^n$. Define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots = \vdots \qquad \vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \sum_{i=1}^{p-1} \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W and in addition

$$\{f v_1,\ldots,f v_k\}=$$
 span $\{f x_1,\ldots,f x_k\}$ for $1\leq k\leq p$