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The Gram-Schmidt Process
Let {x1, . . . , xp} be a basis for a non-zero subspace W ⊆ Rn.
Define

v1 = x1

v2 = x2 −
x2 · v1
v1 · v1

v1

v3 = x3 −
x3 · v1
v1 · v1

v1 −
x3 · v2
v2 · v2

v2

... =
...

...

vp = xp −
p−1∑
i=1

xp · vi
vi · vi

vi

Then {v1, . . . , vp} is an orthogonal basis for W and in addition

span {v1, . . . , vk} = span {x1, . . . , xk} for 1 ≤ k ≤ p



Application for Gram-Schmidt

(Spring 2011 Problem 5a)
Find an orthogonal basis of Col(A) with

A =

 1 3 0 1
2 1 5 −3
−1 −1 −2 1

.

To run Gram-Schmidt we need a basis of Col(A)
(→ Gauss elimination on A!)

Alternatively, we can apply Gram-Schmidt to a generating system
of Col(A). This is less work!
Let xi be the i-th column of A.



Gram-Schmidt on a generating system

We note that all vectors in the generating set are non-zero. Thus

set v1 = x1 =

 1
2
−1

then v2 = x2 − x2·v1
v1·v1

v1 =

−2
1
0

,

v3 = x3 − x3·v1
v1·v1

v1 − x3·v2
v2·v2

v2 = 0

we get 0, so x3 was already contained in the span of v1, v2
 discard v3 and continue with the next vector x4.

v3 = x4 − x4·v1
v1·v1

v1 − x4·v2
v2·v2

v2 = 0

again the result ist 0 and we discard x4.Since it was the last, the

orthogonal basis of Col(A) is


 1

2
−1

 ,

−2
1
0






An observation

In setting up the normal equation we computed matrices of the
form AT A. Here are some examples:

[
17 1
1 5

]
,

[
4 17

17 81

]
,


6 6 12 −6
6 11 7 −1

12 7 29 −17
−6 −1 −17 11


These matrices have an interesting structure:
Taking their transpose we get back the same matrix!1

We call these special matrices symmetric and will now investigate
their properties.

1Note that the rules for the transpose imply (AT A)T = AT (AT )T = AT A.



Application for quadratic forms
What are minima and maxima of
f : R2 → R, (x , y) 7→ cos(x) sin(y)?

Recall from calculus that for a (sufficiently) differentiable function
f : R→ R we know: If f ′(x) = 0 and f ′′(x) 6= 0 then

if f ′′(x) < 0 we have a local maximum at x
if f ′′(x) > 0 we have a local minimum at x

For f : Rn → R (sufficiently) differentiable function a similar
criterion holds with symmetric matrices!



Application for quadratic forms II
In calculus you learn how to compute for x ∈ Rn the derivatives
f ′(x) and f ′′(x).

Furthermore, f ′′(x) is determined by the Hessian

Hf (x) =
[

∂2f
∂xi ∂xj

(x)
]

1≤i ,j≤n

In the example f : R2 → R, (x , y) 7→ cos(x) sin(y). The Hessian
computes as:

Hf
([

x
y

])
= −

[
cos(x) sin(y) sin(x) cos(y)
sin(x) cos(y) cos(x) sin(y)

]

It is a symmetric matrix2.

Study maxima and minima via the Hessian!
2This is no coincidence, by Schwartz law the Hessian of each sufficiently

differentiable function will be symmetric!



An important property

Definition A quadratic form Q(x) = xT Ax is called
I positive definite, if Q(x) > 0, ∀x 6= 0,
I negative definite, if Q(x) < 0, ∀x 6= 0,
I indefinite, if Q(x) assumes both negative and positive values.

Theorem Let A be a symmetrix matrix and Q(x) = xT Ax be the
associated quadratic form.Then Q is
I positive definite, if all eigenvalues of A are positive
I negative definite, if all eigenvalues of A are negative
I indefinite, if there are positive and negative eigenvalues



Generalized criterion for minima and maxima

Let f : Rn → R be a sufficiently differentiable function.

Generalized criterion for minima and maxima:
If f ′(x) = 0 and the Hessian Hf (x) is
I positive definite, then f has a local minimum at x,
I negative definite, then f has a local maximum at x,
I indefinite, then f has a saddle point at x.
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