TMA 4115 Matematikk 3 MTEL, MTENERG, MTIØT, MTTK, II

Alexander Schmeding

NTNU

11. April 2014

The Gram-Schmidt Process

Let $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^n$. Define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots = \vdots \qquad \vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \sum_{i=1}^{p-1} \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}$$

Then $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is an orthogonal basis for W and in addition

$$\mathsf{span}\ \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=\mathsf{span}\ \{\mathbf{x}_1,\ldots,\mathbf{x}_k\}\quad\text{for}\ 1\leq k\leq p$$

Application for Gram-Schmidt

(Spring 2011 Problem 5a)

Find an orthogonal basis of Col(A) with $A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1 \end{bmatrix}.$

To run Gram-Schmidt we need a basis of Col(A)(\rightarrow Gauss elimination on A!)

Alternatively, we can apply Gram-Schmidt to a generating system of Col(A). This is less work! Let \mathbf{x}_i be the *i*-th column of A.

Gram-Schmidt on a generating system

We note that all vectors in the generating set are non-zero. Thus set
$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$
 then $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$,

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \mathbf{0}$$

we get $\boldsymbol{0},$ so \boldsymbol{x}_3 was already contained in the span of $\boldsymbol{v}_1,\boldsymbol{v}_2$ \rightsquigarrow discard \boldsymbol{v}_3 and continue with the next vector $\boldsymbol{x}_4.$

$$\mathbf{v}_3 = \mathbf{x}_4 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \mathbf{0}$$

again the result ist $\boldsymbol{0}$ and we discard $\boldsymbol{x}_4.Since it$ was the last, the

orthogonal basis of Col(A) is
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}$$

An observation

In setting up the normal equation we computed matrices of the form $A^T A$. Here are some examples:

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 17 \\ 17 & 81 \end{bmatrix}, \begin{bmatrix} 6 & 6 & 12 & -6 \\ 6 & 11 & 7 & -1 \\ 12 & 7 & 29 & -17 \\ -6 & -1 & -17 & 11 \end{bmatrix}$$

These matrices have an interesting structure: Taking their transpose we get back the same matrix!¹

We call these special matrices **symmetric** and will now investigate their properties.

¹Note that the rules for the transpose imply $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$.

Application for quadratic forms

What are minima and maxima of $f : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \cos(x) \sin(y)$?

Recall from calculus that for a (sufficiently) differentiable function $f : \mathbb{R} \to \mathbb{R}$ we know: If f'(x) = 0 and $f''(x) \neq 0$ then if f''(x) < 0 we have a local maximum at x if f''(x) > 0 we have a local minimum at x

For $f : \mathbb{R}^n \to \mathbb{R}$ (sufficiently) differentiable function a similar criterion holds with symmetric matrices!

Application for quadratic forms II

In calculus you learn how to compute for $\mathbf{x} \in \mathbb{R}^n$ the derivatives $f'(\mathbf{x})$ and $f''(\mathbf{x})$.

Furthermore, $f''(\mathbf{x})$ is determined by the **Hessian**

$$Hf(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial_{x_i}\partial_{x_j}}(\mathbf{x})\right]_{1 \le i,j \le n}$$

In the example $f : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \cos(x)\sin(y)$. The Hessian computes as:

$$Hf\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = -\begin{bmatrix}\cos(x)\sin(y) & \sin(x)\cos(y)\\\sin(x)\cos(y) & \cos(x)\sin(y)\end{bmatrix}$$

It is a symmetric matrix².

Study maxima and minima via the Hessian!

²This is no coincidence, by Schwartz law the Hessian of each sufficiently differentiable function will be symmetric!

An important property

Definition A quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is called

- positive definite, if $Q(\mathbf{x}) > 0$, $\forall \mathbf{x} \neq \mathbf{0}$,
- negative definite, if $Q(\mathbf{x}) < 0, \ \forall \mathbf{x} \neq \mathbf{0}$,
- indefinite, if $Q(\mathbf{x})$ assumes both negative and positive values.

Theorem Let A be a symmetrix matrix and $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be the associated quadratic form. Then Q is

- positive definite, if all eigenvalues of A are positive
- negative definite, if all eigenvalues of A are negative
- indefinite, if there are positive and negative eigenvalues

Generalized criterion for minima and maxima

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a sufficiently differentiable function.

Generalized criterion for minima and maxima: If $f'(\mathbf{x}) = \mathbf{0}$ and the Hessian $Hf(\mathbf{x})$ is

- positive definite, then f has a local minimum at x,
- negative definite, then f has a local maximum at x,
- indefinite, then f has a saddle point at x.