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The Gram-Schmidt Process

Let {x1,...,X,} be a basis for a non-zero subspace W C R".
Define
Vi = X1
X2+ V1
V2 = X2 — 1
ViV
X3 - V1 X3 - V2
V3 = X3 —
Vi1 - V1 Vo - Vo
p—1
Xp -V
P i
Vp = Xp — Z 7
. V- V;
i=1
Then {v1,...,vp} is an orthogonal basis for W and in addition

span {vi,...,vg} =span {x1,...,xx} for1<k<p



Application for Gram-Schmidt

(Spring 2011 Problem 5a)
Find an orthogonal basis of Col(A) with

1 3 0 1
A=1(2 1 5 =3|.
-1 -1 -2 1

To run Gram-Schmidt we need a basis of Col(A)
(— Gauss elimination on A!)

Alternatively, we can apply Gram-Schmidt to a generating system
of Col(A). This is less work!
Let x; be the i-th column of A.



Gram-Schmidt on a generating system

We note that all vectors in the generating set are non-zero. Thus
1 -2
o _ Xoviy,
set vi =x13 = | 2 |then vo = xp — v V1 = 1],

-1 0
_ X3V X3V _
Vs = X3 = 21— B = 0
we get 0, so x3 was already contained in the span of vy, vs
~~ discard v3 and continue with the next vector x4.
_ X4V X4-V2 _
V3_x4_ﬁvl_ﬁv2_0
again the result ist 0 and we discard x4.Since it was the last, the
1 -2
orthogonal basis of Col(A) is 21,11
-1 0



An observation

In setting up the normal equation we computed matrices of the
form AT A. Here are some examples:

6 6 12 -6
17 1 4 17 6 11 7 -1
1 5|’ 17 81|’ 12 7 29 -—-17
-6 -1 —-17 11

These matrices have an interesting structure:
Taking their transpose we get back the same matrix!!

We call these special matrices symmetric and will now investigate
their properties.

!Note that the rules for the transpose imply (ATA)T = AT(AT)T = ATA.



Application for quadratic forms

What are minima and maxima of
f:R? = R, (x,y) ~ cos(x)sin(y)?

Recall from calculus that for a (sufficiently) differentiable function
f: R — R we know: If f/(x) =0 and f”(x) # 0 then

if /(x) < 0 we have a local maximum at x

if f”/(x) > 0 we have a local minimum at x

For f: R" — R (sufficiently) differentiable function a similar
criterion holds with symmetric matrices!



Application for quadratic forms Il

In calculus you learn how to compute for x € R” the derivatives
f'(x) and f"(x).

Furthermore, ”(x) is determined by the Hessian

82
Hi(x) = |:6Xiaij (X):|1<ij<n

In the example f: R? — R, (x,y) + cos(x)sin(y). The Hessian
computes as:

1 <[x1> _ [cos(x) sin(y) sin(x) cos(y)]

y sin(x) cos(y) cos(x)sin(y)
It is a symmetric matrix.

Study maxima and minima via the Hessian!

2This is no coincidence, by Schwartz law the Hessian of each sufficiently
differentiable function will be symmetric!



An important property

Definition A quadratic form Q(x) = x” Ax is called
» positive definite, if Q(x) >0, Vx # 0,
» negative definite, if Q(x) <0, Vx #0,

» indefinite, if Q(x) assumes both negative and positive values.

Theorem Let A be a symmetrix matrix and @(x) = x” Ax be the
associated quadratic form.Then Q is

» positive definite, if all eigenvalues of A are positive
> negative definite, if all eigenvalues of A are negative

> indefinite, if there are positive and negative eigenvalues



Generalized criterion for minima and maxima

Let f: R" — R be a sufficiently differentiable function.

Generalized criterion for minima and maxima:
If /(x) = 0 and the Hessian Hf(x) is

» positive definite, then f has a local minimum at x,
> negative definite, then f has a local maximum at x,

> indefinite, then f has a saddle point at x.
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