TMA 4115 Matematikk 3
 MTEL, MTENERG, MTIØT, MTTK, II

Alexander Schmeding

NTNU

11. April 2014

The Gram-Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^{n}$. Define

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \vdots=\quad \vdots \quad \vdots \\
& \mathbf{v}_{p}=\mathbf{x}_{p}-\sum_{i=1}^{p-1} \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W and in addition $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\} \quad$ for $1 \leq k \leq p$

Application for Gram-Schmidt

(Spring 2011 Problem 5a)

Find an orthogonal basis of $\operatorname{Col}(A)$ with

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
2 & 1 & 5 & -3 \\
-1 & -1 & -2 & 1
\end{array}\right]
$$

To run Gram-Schmidt we need a basis of $\operatorname{Col}(A)$ (\rightarrow Gauss elimination on $A!$)

Alternatively, we can apply Gram-Schmidt to a generating system of $\operatorname{Col}(A)$. This is less work!
Let \mathbf{x}_{i} be the i-th column of A.

Gram-Schmidt on a generating system

We note that all vectors in the generating set are non-zero. Thus
set $\mathbf{v}_{1}=\mathbf{x}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ then $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\mathbf{0}$
we get $\mathbf{0}$, so \mathbf{x}_{3} was already contained in the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$
\rightsquigarrow discard \mathbf{v}_{3} and continue with the next vector \mathbf{x}_{4}.
$\mathbf{v}_{3}=\mathbf{x}_{4}-\frac{\mathbf{x}_{4} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{4} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=\mathbf{0}$
again the result ist $\mathbf{0}$ and we discard \mathbf{x}_{4}. Since it was the last, the orthogonal basis of $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]\right\}$

An observation

In setting up the normal equation we computed matrices of the form $A^{T} A$. Here are some examples:

$$
\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right], \quad\left[\begin{array}{cc}
4 & 17 \\
17 & 81
\end{array}\right], \quad\left[\begin{array}{cccc}
6 & 6 & 12 & -6 \\
6 & 11 & 7 & -1 \\
12 & 7 & 29 & -17 \\
-6 & -1 & -17 & 11
\end{array}\right]
$$

These matrices have an interesting structure:
Taking their transpose we get back the same matrix! ${ }^{1}$
We call these special matrices symmetric and will now investigate their properties.
${ }^{1}$ Note that the rules for the transpose imply $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.

Application for quadratic forms

What are minima and maxima of
$f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \cos (x) \sin (y)$?

Recall from calculus that for a (sufficiently) differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ we know: If $f^{\prime}(x)=0$ and $f^{\prime \prime}(x) \neq 0$ then
if $f^{\prime \prime}(x)<0$ we have a local maximum at x
if $f^{\prime \prime}(x)>0$ we have a local minimum at x
For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (sufficiently) differentiable function a similar criterion holds with symmetric matrices!

Application for quadratic forms II

In calculus you learn how to compute for $\mathbf{x} \in \mathbb{R}^{n}$ the derivatives $f^{\prime}(\mathbf{x})$ and $f^{\prime \prime}(\mathbf{x})$.

Furthermore, $f^{\prime \prime}(\mathbf{x})$ is determined by the Hessian

$$
H f(\mathbf{x})=\left[\frac{\partial^{2} f}{\partial_{x_{i}} \partial_{x_{j}}}(\mathbf{x})\right]_{1 \leq i, j \leq n}
$$

In the example $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \cos (x) \sin (y)$. The Hessian computes as:

$$
H f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=-\left[\begin{array}{ll}
\cos (x) \sin (y) & \sin (x) \cos (y) \\
\sin (x) \cos (y) & \cos (x) \sin (y)
\end{array}\right]
$$

It is a symmetric matrix ${ }^{2}$.
Study maxima and minima via the Hessian!
${ }^{2}$ This is no coincidence, by Schwartz law the Hessian of each sufficiently differentiable function will be symmetric!

An important property

Definition A quadratic form $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ is called

- positive definite, if $Q(\mathbf{x})>0, \forall \mathbf{x} \neq \mathbf{0}$,
- negative definite, if $Q(\mathbf{x})<0, \forall \mathbf{x} \neq \mathbf{0}$,
- indefinite, if $Q(\mathbf{x})$ assumes both negative and positive values.

Theorem Let A be a symmetrix matrix and $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ be the associated quadratic form. Then Q is

- positive definite, if all eigenvalues of A are positive
- negative definite, if all eigenvalues of A are negative
- indefinite, if there are positive and negative eigenvalues

Generalized criterion for minima and maxima

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a sufficiently differentiable function.
Generalized criterion for minima and maxima:
If $f^{\prime}(\mathbf{x})=\mathbf{0}$ and the Hessian $\operatorname{Hf}(\mathbf{x})$ is

- positive definite, then f has a local minimum at \mathbf{x},
- negative definite, then f has a local maximum at \mathbf{x},
- indefinite, then f has a saddle point at \mathbf{x}.

