TMA 4115 Matematikk 3
 Lecture 10 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
05. February 2014

Vectors

We defined vectors as ordered lists of numbers.
Can perform operations,+- for vectors and \cdot for vector and number.

Recall that a linear combination of vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ is a weighted sum

$$
\sum_{l=1}^{k} r_{l} \overrightarrow{v_{l}}=r_{1} \overrightarrow{v_{1}}+\ldots+r_{k} \overrightarrow{v_{k}}
$$

For a set of vectors we introduced span $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ as the set of all linear combinations of $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.

Examples of such sets in \mathbb{R}^{3} where a point (the origin), lines through the origin and a plane (also through the origin)

Span of the vectors $(1,1,1)$ and $(1,0,0)$

The vectors are not multiples of each other (and both are not $\overrightarrow{0}$), so they span a plane in \mathbb{R}^{3}.

Linear systems vs. vector equations vs. matrices

We can always rewrite a linear system such as

$$
\begin{array}{r}
x_{1}+5 x_{2}+3 x_{3}+2 x_{4}=4 \\
x_{1}-2 x_{3}+2 x_{4}=0 \\
2 x_{2}+4 x_{3}+2 x_{4}=1
\end{array}
$$

as a vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

Solutions to the linear system \leftrightarrow solutions to the vector equation.
Furthermore, there is a representation of the linear system by an augmented matrix

$$
\left[\begin{array}{ccccc}
1 & 5 & 3 & 2 & 4 \\
1 & 0 & -2 & 2 & 0 \\
0 & 2 & 4 & 2 & 1
\end{array}\right]
$$

Linear systems vs. vector equations vs. matrices II

We use the augmented matrix to solve the linear system. However, the matrix representation is a representation, but not an equation.

Question: Can we find an equation with matrices to write the linear system (a matrix equation)?
Idea: Use the coefficients matrix of the linear system:

$$
A=\left[\begin{array}{cccc}
1 & 5 & 3 & 2 \\
1 & 0 & -2 & 2 \\
0 & 2 & 4 & 2
\end{array}\right]=\left[\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]\right]
$$

Perhaps we can make sense of the equation $A \vec{x}=A \cdot \vec{x}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$

Linear systems vs. vector equations vs. matrices III

To make sense of the equation $A \vec{x}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$ for \vec{x}, the left hand side of the equation must coincide with the left hand side of the vector equation

$$
A \vec{x}=x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

In fact we use this equation to define a product $A \vec{x}$ for a suitable vector \vec{x}.

