TMA 4115 Matematikk 3
 Lecture 11 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
11. February 2014

Linear sytems and associated equations

Multiplication: Matrix \times Vector: For $A=\left[\begin{array}{llll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \ldots & \overrightarrow{a_{k}}\end{array}\right]$ and $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ we defined

$$
A \vec{x}=x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{a_{2}}+\cdots+x_{k} \overrightarrow{a_{k}}
$$

Note: The product is a linear combination of the columns of A.
Linear system \leftrightarrow vector equation $\sum_{i=1}^{k} r_{i} \overrightarrow{a_{i}}=\vec{b}$
\leftrightarrow matrix equation $A \vec{x}=\vec{b}$
To solve the equations apply Gaussian elimination to $[A \vec{b}]$

Linear sytems and associated equations II

A linear system is homogeneous if we can write it as $A \vec{x}=\overrightarrow{0}$.
The general solution to $A \vec{x}=\vec{b}$ in parametric form is:

$$
\vec{x}=\overrightarrow{v_{p}}+r_{1} \overrightarrow{v_{1}}+\ldots+r_{k} \overrightarrow{v_{k}}
$$

where $\overrightarrow{v_{p}}$ is a particular solution to $A \vec{x}=\vec{b}$ and $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$ are the solutions of $A \vec{x}=\overrightarrow{0}$ associated to the free variables.

Solutions of matrix equations

We were interested in the following questions about $A \vec{x}=\vec{b}$

1. Is there a solution at all (i.e. is the system consistent)?
2. Is there a unique solution?

For $A=\left[\begin{array}{llll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \ldots & \overrightarrow{a_{n}}\end{array}\right]$ question 1 can be rephrased as:

- Is $\vec{b} \in \operatorname{span}\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}\right\}$?

What about the second question?
Idea: The general solution of $A \vec{x}=\vec{b}$ will produce a unique solution if $A \vec{x}=\overrightarrow{0}$ has a unique solution.

The trivial solution $\overrightarrow{0}$ always exists. Hence, $A \vec{x}=\overrightarrow{0}$ has a unique solution if and only if $\overrightarrow{0}$ is the only solution.

Summary: span and linear (in-)dependence

Let $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}$ be vectors and $A=\left[\begin{array}{llll}\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \ldots & \overrightarrow{v_{p}}\end{array}\right]$.

- $\operatorname{span}\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}\right\}$ is the set of all vectors which can be generated from $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}$.
Test for $\vec{b} \in \operatorname{span}\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}\right\}$: If $A \vec{x}=\vec{b}$ is consistent, \vec{b} is in the span.
- Linear (in-)dependence is about redundance, i.e. whether we can combine vectors from fewer vectors.

Test for linear (in-)dependence of $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}\right\}$: If $[A \overrightarrow{0}]$ contains only basic variables, the family is linearly independent. Otherwise, the family is linearly dependent.
Moral: Use Gaussian elimination to settle these questions!

