TMA 4115 Matematikk 3
 Lecture 12 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
12. February 2014

10.5 Example

Find a linearly independent subfamilie which spans the same set as
\(\left[$$
\begin{array}{l}1 \\
2 \\
3\end{array}
$$\right],\left[$$
\begin{array}{l}4 \\
5 \\
6\end{array}
$$\right],\left[$$
\begin{array}{l}0 \\
1 \\
1\end{array}
$$\right],\left[$$
\begin{array}{l}0 \\
1 \\
0\end{array}
$$\right],\left[\begin{array}{l}1

1

1\end{array}\right]\)| augmented matrix |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Gaussian elimination |\(\left[\begin{array}{ccccccc}1 \& 1 \& 0 \& 0 \& 1 \& 0

0 \& -3 \& 1 \& 0 \& -2 \& 0

0 \& 0 \& 1 \& 1 \& -1 \& 0\end{array}\right]\)

The vectors corresponding to basic variables form a linearly independent subfamily with the same span as before:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Matrix transformations

The Matrix A can be used in the equation $A \vec{x}=\vec{b}$. Here A and \vec{b} are fixed and we are searching for \vec{x}

However, Matrix multiplication allows us to apply A to all possible vectors, e.g. $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ compute

$$
A \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad A \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

Idea: Change view of Matrices to a more dynamic concept: Matrices give us "machines that transform vectors".

Applying matrices to 2D boxes

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \vec{a}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right], \vec{a}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& A \text { y yields a shear transformation } \\
& \hline 0
\end{aligned}
$$

Goal for lecture: View the transformations attached to matrices as functions and study their properties!

