TMA 4115 Matematikk 3 Lecture 12 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

12. February 2014

10.5 Example

The vectors corresponding to basic variables form a linearly independent subfamily with the same span as before:

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

Matrix transformations

The Matrix A can be used in the equation $A\overrightarrow{x} = \overrightarrow{b}$. Here A and \overrightarrow{b} are fixed and we are searching for \overrightarrow{x}

However, Matrix multiplication allows us to apply A to all possible vectors, e.g.
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 compute
 $A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad A \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$

Idea: Change view of Matrices to a more dynamic concept: Matrices give us "machines that transform vectors". Applying matrices to 2D boxes

A yields a shear transformation

B yields a reflection

Goal for lecture: View the transformations attached to matrices as functions and study their properties!