TMA 4115 Matematikk 3 Lecture 13 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

18. February 2014

Matrix $A \to$ linear transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^m, \overrightarrow{x} \mapsto A \overrightarrow{x}$

 $T: \mathbb{R}^n \to \mathbb{R}^m$ linear \to standard matrix $\left[T(\overrightarrow{e_1}) \quad \dots \quad T(\overrightarrow{e_n})\right]$

Formulate questions about $A\overrightarrow{x} = \overrightarrow{b}$ in the language of linear transformations. Recall $T : \mathbb{R}^n \to \mathbb{R}^m$ is

- onto if each $\overrightarrow{b} \in \mathbb{R}^m$ is the image of <u>at least</u> one $\overrightarrow{x} \in \mathbb{R}^n$
- **one-to-one** if each $\overrightarrow{b} \in \mathbb{R}^m$ is the image of <u>at most</u> one $\overrightarrow{x} \in \mathbb{R}^n$

(In the literature: **onto** = **surjective**, **one-to-one** = **injective**)

11.11 Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if $T(\overrightarrow{x}) = \overrightarrow{0}$ has only the trivial solution $\overrightarrow{0}$.

Proof: If *T* is one-to-one, there is at most one solution to $T(\vec{x}) = \vec{0}$. Hence, only the trivial $\vec{x} = \vec{0}$ solves $T(\vec{x}) = \vec{0}$.

Conversly let only $\overrightarrow{x} = \overrightarrow{0}$ solve $T(\overrightarrow{x}) = \overrightarrow{0}$.

Assume that $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^n$ satisfy $T(\overrightarrow{v}) = T(\overrightarrow{u})$. Then

$$\overrightarrow{0} = T(\overrightarrow{u}) - T(\overrightarrow{v}) = T(\overrightarrow{u} - \overrightarrow{v})$$

Hence, $\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{0}$ and thus $\overrightarrow{u} = \overrightarrow{v}$. Each vector in \mathbb{R}^m may thus only be the image of at most one vector in \mathbb{R}^n . \Box

Rephrase questions about $A\overrightarrow{x} = \overrightarrow{b}$

Let
$$A = \begin{bmatrix} \overrightarrow{a}_1 & \dots & \overrightarrow{a}_n \end{bmatrix}$$
 be an $n \times m$ matrix.
1. Is $A\overrightarrow{x} = \overrightarrow{b}$ consistent for all $\overrightarrow{b} \in \mathbb{R}^m$?
 \leftrightarrow Is every \overrightarrow{b} in the span $\{\overrightarrow{a_1}, \dots, \overrightarrow{a_n}\}$?
 \leftrightarrow Is $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ onto \mathbb{R}^m ?
2. Is there a unique solution to $A\overrightarrow{x} = \overrightarrow{b}$ for $\overrightarrow{b} \in \mathbb{R}^m$?
 \leftrightarrow Are $\overrightarrow{a}_1, \dots, \overrightarrow{a}_n$ linearly independent?
 \leftrightarrow Is $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ one-to-one?

12. Matrix algebra

Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations and $r \in \mathbb{R}$. Then $f + rg: \mathbb{R}^n \to \mathbb{R}^m, \overrightarrow{x} \mapsto f(\overrightarrow{x}) + rg(\overrightarrow{x})$ is linear:

$$(f + rg)(\overrightarrow{v} + t\overrightarrow{u}) = f(\overrightarrow{u} + t\overrightarrow{v}) + rg(\overrightarrow{u} + t\overrightarrow{v})$$
$$= (f + rg)(\overrightarrow{u}) + t(f + rg)(\overrightarrow{v})$$

For $h: \mathbb{R}^m \to \mathbb{R}^p$ linear the composition $h \circ f: \mathbb{R}^n \to \mathbb{R}^p$ is linear.

Question: Are the standard matrices of (f + rg) and $h \circ g$ related to the standard matrices of f, g and h?