TMA 4115 Matematikk 3
 Lecture 13 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
18. February 2014

Matrix $A \rightarrow$ linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}$
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear \rightarrow standard matrix $\left[\begin{array}{lll}T\left(\overrightarrow{e_{1}}\right) & \ldots & T\left(\overrightarrow{e_{n}}\right)\end{array}\right]$
Formulate questions about $A \vec{x}=\vec{b}$ in the language of linear transformations. Recall $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is

- onto if each $\vec{b} \in \mathbb{R}^{m}$ is the image of at least one $\vec{x} \in \mathbb{R}^{n}$
- one-to-one if each $\vec{b} \in \mathbb{R}^{m}$ is the image of at most one $\vec{x} \in \mathbb{R}^{n}$
(In the literature: onto $=$ surjective, one-to-one $=$ injective $)$

11.11 Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one-to-one if and only if $T(\vec{x})=\overrightarrow{0}$ has only the trivial solution $\overrightarrow{0}$.

Proof: If T is one-to-one, there is at most one solution to $T(\vec{x})=\overrightarrow{0}$. Hence, only the trivial $\vec{x}=\overrightarrow{0}$ solves $T(\vec{x})=\overrightarrow{0}$.

Conversly let only $\vec{x}=\overrightarrow{0}$ solve $T(\vec{x})=\overrightarrow{0}$.
Assume that $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ satisfy $T(\vec{v})=T(\vec{u})$. Then

$$
\overrightarrow{0}=T(\stackrel{\rightharpoonup}{u})-T(\stackrel{\rightharpoonup}{v})=T(\vec{u}-\stackrel{\rightharpoonup}{v})
$$

Hence, $\vec{u}-\vec{v}=\overrightarrow{0}$ and thus $\vec{u}=\vec{v}$. Each vector in \mathbb{R}^{m} may thus only be the image of at most one vector in \mathbb{R}^{n}. \square

Rephrase questions about $A \vec{x}=\vec{b}$

Let $A=\left[\begin{array}{lll}\vec{a}_{1} & \ldots & \vec{a}_{n}\end{array}\right]$ be an $n \times m$ matrix.

1. Is $A \vec{x}=\vec{b}$ consistent for all $\vec{b} \in \mathbb{R}^{m}$?
\leftrightarrow Is every \vec{b} in the $\operatorname{span}\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}\right\}$?
\leftrightarrow Is $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ onto \mathbb{R}^{m} ?
2. Is there a unique solution to $A \vec{x}=\vec{b}$ for $\vec{b} \in \mathbb{R}^{m}$?
\leftrightarrow Are $\vec{a}_{1}, \ldots, \vec{a}_{n}$ linearly independent?
\leftrightarrow Is $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ one-to-one?

12. Matrix algebra

Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear transformations and $r \in \mathbb{R}$. Then $f+r g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto f(\vec{x})+r g(\vec{x})$ is linear:

$$
\begin{aligned}
(f+r g)(\vec{v}+t \vec{u}) & =f(\vec{u}+t \vec{v})+r g(\vec{u}+t \vec{v}) \\
& =(f+r g)(\vec{u})+t(f+r g)(\vec{v})
\end{aligned}
$$

For $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ linear the composition $h \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is linear.
Question: Are the standard matrices of $(f+r g)$ and $h \circ g$ related to the standard matrices of f, g and h ?

