TMA 4115 Matematikk 3
 Lecture 14 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
19. February 2014

Matrix operations

For matrices M, N of the same size the following operations are explained "componentwise":

- Multiplication: $r M$ for $r \in \mathbb{R}$
- Addition: $\quad M+N$ (and $M-N=M+(-1) N$)

Operations work as expected (i.e. almost as for real numbers).
Multiplication of matrices is complicated:
If A is $n \times p$ and B is $p \times q$ then $A \cdot B$ is defined and a $n \times q$ matrix.

Matrix multiplication (diegan foom Atemumodis om)

Matrix multiplication: Rules

For matrices A, B, C of suitable size the following rules holds:

- $A(B C)=(A B) C$
- $A(B+C)=A B+A C$ and $(B+C) A=B A+C A$, $r(A B)=(r A) B=A(r B)$
Even if possible $A B \neq B A$ in general!
There are $A, B \neq 0$ with $A B=0$
Matrix multiplication does not behave like multiplication in \mathbb{R} !
We investigate matrices with "nice" properties concerning multiplication: The invertible matrices.

