TMA 4115 Matematikk 3
 Lecture 15 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
25. February 2014

Invertible matrices

A $n \times n$ square matrix A is called invertible if there is a square matrix A^{-1} with

$$
A \cdot A^{-1}=I_{n} \quad A^{-1} \cdot A=I_{n}
$$

The equation $A \vec{x}=\vec{b}$ for a $n \times n$ matrix A has a unique solution for all $\vec{b} \in \mathbb{R}^{n}$ if and only if A is invertible.

Use Gaussian elimination on $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$ to compute if A is invertible and if so, get A^{-1}.

Invertible matrices and determinants

Special case 2×2 : For $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ we know:
A is invertible if the determinant $\operatorname{det} A=a d-b c$ is not zero.
We saw similar behavior for second order differential equations:
The Wronskian was defined as the determinant of a 2×2 matrix.
Question: Can we define a "determinant" for arbitrary square matrices?

The 3×3 case

Use Gaussian elimination to row reduce an (invertible) 3×3 matrix (with $a_{11} \neq 0$):

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right]} \\
& \rightsquigarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
\end{aligned}
$$

with $\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$
$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$.
Now A can only be invertible, if $\Delta \neq 0$.

3×3 determinants

We define

$$
\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
$$

$$
-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
$$

If you want to remember this formula, use the "rule of Sarrus":

Problem: How to produce a general formula for the $n \times n$-case?

Derive a general formula

We rewrite the formula Δ for the 3×3 matrix:

$$
\begin{aligned}
\Delta= & \left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}\right)+\left(a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}\right) \\
& +\left(a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right) \\
= & a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
= & a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{32} & a_{31}
\end{array}\right]
\end{aligned}
$$

Delete the i-th row and j-th column in A to form a matrix $A_{i j}$ then

$$
\Delta=a_{11} \operatorname{det} A_{11}+a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

13.1 Recursive Definition of Determinants

Fix a $n \times n$ matrix A. If $1 \leq i, j \leq n$ we form matrices $A_{i j}$ by deleting in A the i-th row and
j-th column.
Define the determinant of the matrix A :
For $n=1$: $\quad \operatorname{det}\left[a_{11}\right]=a_{11}$.
For $n \geq 2$ and $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ define the determinant as $\operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+a_{1 n} \operatorname{det} A_{1 n}$

$$
=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}
$$

Aim of chapter 13:

1. Characterize determinants (and compute them),
2. consider applications of determinants.
