## TMA 4115 Matematikk 3 Lecture 15 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

25. February 2014

#### Invertible matrices

A  $n \times n$  square matrix A is called **invertible** if there is a square matrix  $A^{-1}$  with

$$A \cdot A^{-1} = I_n \quad A^{-1} \cdot A = I_n$$

The equation  $A\overrightarrow{x} = \overrightarrow{b}$  for a  $n \times n$  matrix A has a unique solution for all  $\overrightarrow{b} \in \mathbb{R}^n$  if and only if A is invertible.

Use Gaussian elimination on  $\begin{bmatrix} A & I_n \end{bmatrix}$  to compute if A is invertible and if so, get  $A^{-1}$ .

### Invertible matrices and determinants

**Special case** 2 × 2: For 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 we know:

A is invertible if the **determinant** det A = ad - bc is not zero.

We saw similar behavior for second order differential equations: The Wronskian was defined as the determinant of a  $2 \times 2$  matrix.

**Question:** Can we define a "determinant" for arbitrary square matrices?

# The $3 \times 3$ case

Use Gaussian elimination to row reduce an (invertible)  $3 \times 3$  matrix (with  $a_{11} \neq 0$ ):

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \rightsquigarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11}a_{21} & a_{11}a_{22} & a_{11}a_{23} \\ a_{11}a_{31} & a_{11}a_{32} & a_{11}a_{33} \end{bmatrix}$$

$$\rightsquigarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & a_{11}a_{32} - a_{12}a_{31} & a_{11}a_{33} - a_{13}a_{31} \end{bmatrix}$$

$$\rightsquigarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & 0 & a_{11}\Delta \end{bmatrix}$$

with  $\Delta = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$ -  $a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$ .

Now A can only be invertible, if  $\Delta \neq 0$ .

### $3 \times 3 \text{ determinants}$

#### We define

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \Delta = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.$$

If you want to remember this formula, use the "rule of Sarrus":



**Problem:** How to produce a general formula for the  $n \times n$ -case?

## Derive a general formula

We rewrite the formula  $\Delta$  for the 3  $\times$  3 matrix:

$$\begin{split} \Delta &= (a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32}) + (a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33}) \\ &+ (a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}) \\ &= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) \\ &+ a_{13}(a_{21}a_{32} - a_{22}a_{31}) \\ &= a_{11}\det \begin{bmatrix} a_{22} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} - a_{12}\det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13}\det \begin{bmatrix} a_{21} & a_{22} \\ a_{32} & a_{31} \end{bmatrix}$$

Delete the *i*-th row and *j*-th column in A to form a matrix  $A_{ij}$  then

$$\Delta = a_{11} \det A_{11} + a_{12} \det A_{12} + a_{13} \det A_{13}$$

# 13.1 Recursive Definition of Determinants

Fix a  $n \times n$  matrix A. If  $1 \le i, j \le n$  we form matrices  $A_{ij}$  by deleting in A the i-th row and j-th column.

Define the **determinant** of the matrix *A*: For n = 1: det  $\begin{bmatrix} a_{11} \end{bmatrix} = a_{11}$ . For  $n \ge 2$  and  $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{1 \le i, j \le n}$  define the determinant as

det 
$$A = a_{11}$$
det  $A_{11} - a_{12}$ det  $A_{12} + \dots + a_{1n}$ det  $A_{1n}$ 
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j}$$
det  $A_{1j}$ 

#### Aim of chapter 13:

- 1. Characterize determinants (and compute them),
- 2. consider applications of determinants.