TMA 4115 Matematikk 3
 Lecture 17 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
04. March 2014

An interesting observation

So far we have studied:

Linear differential equations

$$
y^{\prime \prime}+2 y^{\prime}+y=g(x)
$$

Goal: Find functions solving the equation

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =0 \\
42 x_{1}-x_{3} & =12 \\
x_{2}+x_{3} & =1
\end{aligned}
$$

Linear systems

Goal: Find numbers/vectors solving the system

Both topics seem to be connected! (Determinants, general solutions, homogeneous equations...)

Question: What is the theoretical explanation?

Linear transformations

Rewrite the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =0 \\
42 x_{1}-x_{3} & =12 \\
x_{2}+x_{3} & =1
\end{aligned}
$$

as a matrix equation $A \vec{x}=\left[\begin{array}{c}0 \\ 12 \\ 1\end{array}\right]$ and associate a linear
transformation $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Solutions to the linear system are
solutions to $T_{A}(\vec{x})=\left[\begin{array}{c}0 \\ 12 \\ 1\end{array}\right]$
Can we view a linear differential equation in the same way?

Linear transformations (on functions?)

The left hand side of $y^{\prime \prime}+2 y^{\prime}+y=g(x)$ is a transformation for functions:

f	$f^{\prime \prime}+2 f^{\prime}+f$
e^{x}	$4 e^{x}$
$\sin (x)$	$2 \cos (x)$
$\cos (x)$	$-2 \sin (x)$
t	t
t^{2}	$2+2 t+t^{2}$

It is even a "linear" transformation:

f	$f^{\prime \prime}+2 f^{\prime}+f$
$e^{x}+\sin (x)$	$4 e^{x}+2 \cos (x)$
$t+t^{2}+\cos (x)$	$t+2+2 t+t^{2}-2 \sin (x)$
0	0

Functions behave in this example like vectors!

Functions as vectors?

Indeed functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ behave like vectors. We can pointwise add and multiply with real numbers:

- $f+g=g+f$
- $(f+g)+h=f+(g+h)$
- Let 0 be the function which is constant 0 , then $0+f=f=f+0$
- $r \cdot(s \cdot f)=(r s) \cdot f=s \cdot(r \cdot f)$
- $(r+s) f=r \cdot f+s \cdot f$
- $r \cdot(f+g)=r \cdot f+r \cdot g$
- $f+(-1) \cdot f=f-f=0$
- $1 \cdot f=f$

14.1 Definition (abstract) vector space

Fix $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. A (\mathbb{K}-)vector space is a non-empty set V of objects, called vectors, with operations " + " addition and "." multiplication by scalars ($=$ numbers in \mathbb{K}).
For all vectors \vec{u}, \vec{v} and \vec{w} in V and $r, s \in \mathbb{K}$ the following rules must hold:

- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
- There is a zero-vector $\overrightarrow{0}$ with $\overrightarrow{0}+\vec{v}=\vec{v}$
- for \vec{v} there is $-\vec{v}$ with $\vec{v}+(-\vec{v})=\overrightarrow{0}((-1) \cdot \vec{v}=-\vec{v})$
- $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$
- $(r+s) \stackrel{\rightharpoonup}{v}=r \vec{v}+s \vec{v}$
- $(r s) \vec{v}=r(s \vec{v})$
- $1 \vec{v}=\vec{v}$

In this lecture, we consider only \mathbb{R}-vector spaces. So if nothing else is said, assume $\mathbb{K}=\mathbb{R}$.

Vector spaces

(Most important) Example: \mathbb{R}^{n} is a vector space.
If you have trouble with abstract vector spaces, always think of how things work in \mathbb{R}^{n} !

Vector spaces generalize \mathbb{R}^{n}. Thus they show

- what properties in \mathbb{R}^{n} are important for linear algebra,
- how to extend linear algebra to more general situations.

To showcase the above principles we extend some old definitions:

Familiar concepts now in vector spaces

Let V be a vector space and $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}} \in V$. A linear combination of $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$ is a weighted sum

$$
\sum_{l=1}^{k} r_{l} \overrightarrow{v_{l}}=r_{1} \overrightarrow{v_{1}}+\ldots+r_{k} \overrightarrow{v_{k}}
$$

We define span $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$, the set of all linear combinations of $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.

The vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$ are called linearly independent if

$$
\sum_{i=1}^{k} r_{i} \stackrel{\rightharpoonup}{v}_{i}=r_{1} \vec{v}_{1}+r_{2} \vec{v}_{2}+\ldots+r_{k} \vec{v}_{k}=\overrightarrow{0}
$$

has only the trivial solution $r_{1}=r_{2}=\cdots=r_{k}=0$.

