TMA 4115 Matematikk 3 Lecture 17 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

04. March 2014

An interesting observation

So far we have studied:

Linear differential equations

$$y''+2y'+y=g(x)$$

$$x_1 + 2x_2 - x_3 = 0$$
$$42x_1 - x_3 = 12$$

Linear systems

$$x_2 + x_3 = 1$$

Goal: Find functions
solving the equationGoal: Find numbers/vectors
solving the system

Both topics seem to be connected! (Determinants, general solutions, homogeneous equations...)

Question: What is the theoretical explanation?

Linear transformations

Rewrite the linear system

$$\begin{aligned} x_1 + 2x_2 - x_3 &= 0\\ 42x_1 - x_3 &= 12\\ x_2 + x_3 &= 1 \end{aligned}$$

as a matrix equation $A\overrightarrow{x} = \begin{bmatrix} 0\\12\\1 \end{bmatrix}$ and associate a linear
transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$. Solutions to the linear system are
solutions to $T_A(\overrightarrow{x}) = \begin{bmatrix} 0\\12\\1 \end{bmatrix}$

Can we view a linear differential equation in the same way?

Linear transformations (on functions?)

The left hand side of y'' + 2y' + y = g(x) is a transformation for functions:

f	f'' + 2f' + f
e ^x	4 <i>e</i> [×]
sin(x)	$2\cos(x)$
$\cos(x)$	$-2\sin(x)$
t	t
t^2	$2 + 2t + t^2$

It is even a "linear" transformation:

$$\begin{array}{c|c} f & f'' + 2f' + f \\ \hline e^x + \sin(x) & 4e^x + 2\cos(x) \\ t + t^2 + \cos(x) & t + 2 + 2t + t^2 - 2\sin(x) \\ 0 & 0 \end{array}$$

Functions behave in this example like vectors!

Functions as vectors?

Indeed functions $f, g, h: \mathbb{R} \to \mathbb{R}$ behave like vectors. We can pointwise add and multiply with real numbers:

•
$$f + g = g + f$$

•
$$(f+g) + h = f + (g+h)$$

Let 0 be the function which is constant 0, then 0 + f = f = f + 0

$$r \cdot (s \cdot f) = (rs) \cdot f = s \cdot (r \cdot f)$$

$$(r+s)f = r \cdot f + s \cdot f$$

$$\bullet \ r \cdot (f+g) = r \cdot f + r \cdot g$$

•
$$f + (-1) \cdot f = f - f = 0$$

▶ $1 \cdot f = f$

14.1 Definition (abstract) vector space

Fix $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. A (\mathbb{K} -)vector space is a non-empty set V of objects, called vectors, with operations "+" *addition* and "·" *multiplication* by scalars (=numbers in \mathbb{K}). For all vectors \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} in V and $r, s \in \mathbb{K}$ the following rules must hold:

•
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$

• $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$
• There is a **zero-vector** $\overrightarrow{0}$ with $\overrightarrow{0} + \overrightarrow{v} = \overrightarrow{v}$
• for \overrightarrow{v} there is $-\overrightarrow{v}$ with $\overrightarrow{v} + (-\overrightarrow{v}) = \overrightarrow{0} ((-1) \cdot \overrightarrow{v} = -\overrightarrow{v})$
• $r(\overrightarrow{u} + \overrightarrow{v}) = r\overrightarrow{u} + r\overrightarrow{v}$
• $(r+s)\overrightarrow{v} = r\overrightarrow{v} + s\overrightarrow{v}$
• $(rs)\overrightarrow{v} = r(s\overrightarrow{v})$
• $1\overrightarrow{v} = \overrightarrow{v}$

In this lecture, we consider only $\mathbb R\text{-vector spaces.}$ So if nothing else is said, assume $\mathbb K=\mathbb R.$

(Most important) Example: \mathbb{R}^n is a vector space.

If you have trouble with abstract vector spaces, always think of how things work in $\mathbb{R}^n!$

Vector spaces generalize \mathbb{R}^n . Thus they show

- what properties in \mathbb{R}^n are important for linear algebra,
- how to extend linear algebra to more general situations.

To showcase the above principles we extend some old definitions:

Familiar concepts now in vector spaces

Let V be a vector space and $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k} \in V$. A linear combination of $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ is a weighted sum

$$\sum_{l=1}^{k} r_l \overrightarrow{v_l} = r_1 \overrightarrow{v_1} + \ldots + r_k \overrightarrow{v_k}$$

We define span $\{ \overrightarrow{v_1}, \ldots, \overrightarrow{v_k} \}$, the set of all linear combinations of $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$.

The vectors $\overline{v_1}, \ldots, \overline{v_k}$ are called **linearly independent** if

$$\sum_{i=1}^{k} r_i \overrightarrow{v}_i = r_1 \overrightarrow{v}_1 + r_2 \overrightarrow{v}_2 + \ldots + r_k \overrightarrow{v}_k = \overrightarrow{0}$$

has only the trivial solution $r_1 = r_2 = \cdots = r_k = 0$.