TMA 4115 Matematikk 3
 Lecture 18 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
05. March 2014

14.1 Definition (abstract) vector space

Fix $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. A (\mathbb{K}-)vector space is a non-empty set V of objects, called vectors, with operations "+" addition and "." multiplication by scalars (=numbers in \mathbb{K}).

A subspace H of V is a subset $H \subseteq V$ such that

- $\overrightarrow{0} \in H$,
- for $\stackrel{\rightharpoonup}{v}, \stackrel{\rightharpoonup}{w} \in H$ and $r \in \mathbb{K}$ the sum $\vec{v}+r \stackrel{\rightharpoonup}{w} \in H$.

Idea: Vector spaces behave like \mathbb{R}^{n} and the many important examples arise as subspaces of \mathbb{R}^{n}.

Examples: Subspaces of \mathbb{R}^{2}

- $\mathbb{R}^{2},\{\overrightarrow{0}\}$ are subspaces of \mathbb{R}^{2}.
- For a vector $\vec{x} \in \mathbb{R}^{2}$ the set span $\{\vec{x}\}$ is a subspace of \mathbb{R}^{2}. If $\vec{x} \neq \overrightarrow{0}$, span $\{\vec{x}\}$ can be drawn as a line through the origin.

Subsets of \mathbb{R}^{2} which are not subspaces:

Does not contain $\overrightarrow{0}$!
$U=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$

$(1,0),(0,1) \in U$ but $(1,0)+(0,1)=(1,1) \notin U!$

We want to determine how vectors in a subspace can be generated. To this end recall:

The set $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\} \subseteq V$ in a vector space V (or shorter the vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$) is linearly independent if

$$
\sum_{i=1}^{k} r_{i} \stackrel{\rightharpoonup}{v}_{i}=r_{1} \vec{v}_{1}+r_{2} \vec{v}_{2}+\ldots+r_{k} \vec{v}_{k}=\overrightarrow{0}
$$

has only the trivial solution $r_{1}=r_{2}=\cdots=r_{k}=0$.
Idea: In \mathbb{R}^{n} a linear independent set is a "minimal set" which generates a span.

Algorithms to find linearly independent sets

Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ be a subset of a vector space. If the set is not linearly independent, we want to produce a linearly independent set with the same span. Two strategies:

1. Remove a term which is a linear combination of the other. This does not change the span. Repeat as often as necessary. In the end we obtain a spanning set which is linearly independent.
2. Build the spanning set step by step: Start with a non-zero vector and consider for each vector: "Does this enlarge the span already obtained?" If so, add it. If not, throw it away. This builds up a linearly independent set until it spans.
Second strategy can be done by Gaussian Elimination (cf. chapter on Gaussian elimination).

14.17 Definition Linear transformations

Let V, W be vector spaces. A function $T: V \rightarrow W$ is called a linear transformation if for all vectors \vec{v}, \vec{w} and each scalar $r \in \mathbb{K}$ the following holds

$$
T(\stackrel{\rightharpoonup}{u}+r \stackrel{\rightharpoonup}{v})=T(\stackrel{\rightharpoonup}{u})+r T(\stackrel{\rightharpoonup}{v})
$$

For a linear transformation $T: V \rightarrow W$ we define

$$
\begin{aligned}
& \text { kernel of } T: \text { ker } T=\{\vec{v} \in V \mid T(\vec{v}=0\} \\
& \text { image of } T: \operatorname{im} T=\{\vec{w} \in W \mid \exists \vec{x} \in V \text { with } T(\vec{x})=\vec{w}\}
\end{aligned}
$$

Note: ker T is a subspace of V and $\operatorname{im} T$ is a subspace of W.
Example: If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$ then a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation for some matrix A. We see ker $T=\operatorname{Nul}(A)$ and $\operatorname{im} T=\operatorname{Col}(A)$.

More examples for linear transformations

- $S: \mathbb{R}^{3} \rightarrow \mathbb{P}_{2},\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \mapsto a_{1}+a_{2} t+a_{3} t^{2}$, then
ker $S=\{\overrightarrow{0}\}$ and $\operatorname{im} S=\mathbb{P}_{2}$
- $\mathrm{ev}_{0}: C^{0}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R}, f \mapsto f(0)$,then ker ev $0=\left\{f \in C^{0}(\mathbb{R}, \mathbb{R}) \mid f(0)=0\right\}$ and $\mathrm{im} \mathrm{ev}_{0}=\mathbb{R}$.
- $\delta: C^{2}(\mathbb{R}, \mathbb{R}) \rightarrow C^{0}(\mathbb{R}, \mathbb{R}), f \mapsto f^{\prime \prime}+\omega^{2} f$, then

$$
\begin{aligned}
\text { ker } \delta= & \left\{\text { solutions to } f^{\prime \prime}+\omega^{2} f=0\right\} \\
= & \operatorname{span}\{\cos (\omega t), \sin (\omega t)\} \\
\operatorname{im} \delta= & \left\{g \in C^{0}(\mathbb{R}, \mathbb{R}) \text { with } f^{\prime \prime}+\omega^{2} f=g\right. \\
& \text { for } \left.f \in C^{2}(\mathbb{R}, \mathbb{R})\right\}
\end{aligned}
$$

