TMA 4115 Matematikk 3 Lecture 18 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

05. March 2014

14.1 Definition (abstract) vector space

Fix $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. A (\mathbb{K} -)**vector space** is a non-empty set *V* of objects, called **vectors**, with operations "+" *addition* and "·" *multiplication* by **scalars** (=numbers in \mathbb{K}).

A subspace *H* of *V* is a subset $H \subseteq V$ such that

▶
$$\overrightarrow{0} \in H$$
,

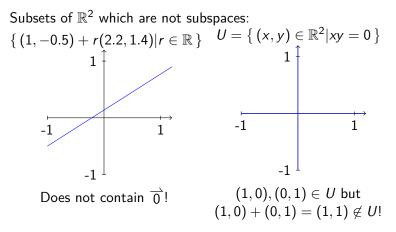
• for
$$\overrightarrow{v}, \overrightarrow{w} \in H$$
 and $r \in \mathbb{K}$ the sum $\overrightarrow{v} + r \overrightarrow{w} \in H$.

Idea: Vector spaces behave like \mathbb{R}^n and the many important examples arise as subspaces of \mathbb{R}^n .

Examples: Subspaces of \mathbb{R}^2

•
$$\mathbb{R}^2$$
, { $\overrightarrow{0}$ } are subspaces of \mathbb{R}^2 .

For a vector x ∈ ℝ² the set span { x } is a subspace of ℝ².
 If x ≠ 0, span { x } can be drawn as a line through the origin.



We want to determine how vectors in a subspace can be generated. To this end recall:

The set $\{\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}\} \subseteq V$ in a vector space V (or shorter the vectors $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$) is **linearly independent** if

$$\sum_{i=1}^{k} r_i \overrightarrow{v}_i = r_1 \overrightarrow{v}_1 + r_2 \overrightarrow{v}_2 + \ldots + r_k \overrightarrow{v}_k = \overrightarrow{0}$$

has only the trivial solution $r_1 = r_2 = \cdots = r_k = 0$.

Idea: In \mathbb{R}^n a linear independent set is a "minimal set" which generates a span.

Algorithms to find linearly independent sets

Let $\{ \overrightarrow{v}_1, \ldots, \overrightarrow{v}_k \}$ be a subset of a vector space. If the set is not linearly independent, we want to produce a linearly independent set with the same span. Two strategies:

- Remove a term which is a linear combination of the other. This does not change the span. Repeat as often as necessary. In the end we obtain a spanning set which is linearly independent.
- Build the spanning set step by step: Start with a non-zero vector and consider for each vector: "Does this enlarge the span already obtained?" If so, add it. If not, throw it away. This builds up a linearly independent set until it spans.

Second strategy can be done by Gaussian Elimination (cf. chapter on Gaussian elimination).

14.17 Definition Linear transformations

Let V, W be vector spaces. A function $T: V \to W$ is called a **linear transformation** if for all vectors \vec{v}, \vec{w} and each scalar $r \in \mathbb{K}$ the following holds

$$T(\overrightarrow{u} + r\overrightarrow{v}) = T(\overrightarrow{u}) + rT(\overrightarrow{v})$$

For a linear transformation $T: V \rightarrow W$ we define

kernel of
$$T$$
: ker $T = \{ \overrightarrow{v} \in V | T(\overrightarrow{v} = 0 \}$
image of T : im $T = \{ \overrightarrow{w} \in W | \exists \overrightarrow{x} \in V \text{ with } T(\overrightarrow{x}) = \overrightarrow{w} \}$

Note: ker T is a subspace of V and im T is a subspace of W.

Example: If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ then a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation for some matrix A. We see ker T = Nul (A) and im T = Col (A). More examples for linear transformations

•
$$S: \mathbb{R}^3 \to \mathbb{P}_2, \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \mapsto a_1 + a_2 t + a_3 t^2$$
, then
ker $S = \{ \overrightarrow{0} \}$ and im $S = \mathbb{P}_2$
• $ev_0: C^0(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(0)$, then
ker $ev_0 = \{ f \in C^0(\mathbb{R}, \mathbb{R}) | f(0) = 0 \}$ and im $ev_0 = \mathbb{R}$.
• $\delta: C^2(\mathbb{R}, \mathbb{R}) \to C^0(\mathbb{R}, \mathbb{R}), f \mapsto f'' + \omega^2 f$, then
ker $\delta = \{ \text{solutions to } f'' + \omega^2 f = 0 \}$
 $= \text{span} \{ \cos(\omega t), \sin(\omega t) \}.$
im $\delta = \{ g \in C^0(\mathbb{R}, \mathbb{R}) \text{ with } f'' + \omega^2 f = g \}$
for $f \in C^2(\mathbb{R}, \mathbb{R}) \}$