TMA 4115 Matematikk 3
 Lecture 18 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
11. March 2014

Basis of a vector space

Let V be a vector space. A subset $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is called basis of V if

- span $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}=V$
- the set \mathcal{B} is linearly independent

We can think of a basis as a "minimal" system generating V.
Example: The unit vectors $\vec{e}_{1}, \ldots \vec{e}_{n} \in \mathbb{R}^{n}$ are a basis for \mathbb{R}^{n}, the standard basis

14.17 Definition Linear transformations

Let V, W be vector spaces. A function $T: V \rightarrow W$ is called a linear transformation if for all vectors \vec{V}, \vec{w} and each scalar $r \in \mathbb{K}$ the following holds

$$
T(\stackrel{\rightharpoonup}{u}+r \stackrel{\rightharpoonup}{v})=T(\stackrel{\rightharpoonup}{u})+r T(\stackrel{\rightharpoonup}{v})
$$

Example: If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$ then a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation for some matrix A.

Idea: Use linear transformations to translate problems in abstract vector spaces to \mathbb{R}^{n}.

14.18 Theorem

Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis of a vector space V then each $\vec{x} \in V$ can be written as a unique linear combination

$$
\vec{x}=\sum_{i=1}^{n} c_{i} \vec{b}_{i}
$$

In particular this gives an (invertible!) linear transformation

$$
K_{\mathcal{B}}: V \rightarrow \mathbb{R}^{n}, \stackrel{\rightharpoonup}{x}=\sum_{i=1}^{n} c_{i} \vec{b}_{i} \mapsto\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Translating problems to \mathbb{R}^{n}

Finding an unknown polynomial

In an experiment we observe the following values of an unknown

function f : time t 0 | 1 | 2 | 3 | |
| :---: | :---: | :---: | :---: |
| $f(t)$ | .4 | 1.2 | -.2 |

Can we approximate f with something simple, i.e. is there a polynomial of (at most) degree 3 which takes these values?

This is a question about the abstract vector space \mathbb{P}_{3}. Idea: Translate the problem to one in \mathbb{R}^{4}
$S: \mathbb{R}^{4} \rightarrow \mathbb{P}_{3},\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \mapsto \sum_{i=0}^{3} a_{i} t^{i}$ is linear, one-to-one and onto
i.e. we can translate every polynomial to a unique vector in \mathbb{R}^{4}.

Translating problems to \mathbb{R}^{n}

Recall that the maps

$$
\mathrm{ev}_{k}: \mathbb{P}_{3} \rightarrow \mathbb{R}, p(t) \mapsto p(k), k=0,1,2,3
$$

are linear. With their help we rewrite t	0	1	2	3
$f(t)$.4	1.2	-.2	0

$$
\mathrm{ev}_{0}(p)=.4, \mathrm{ev}_{1}(p)=1.2, \mathrm{ev}_{2}(p)=-.2 \operatorname{and}^{2} \mathrm{ev}_{3}(p)=0
$$

We are now searching for $\vec{x} \in \mathbb{R}^{4}$ such that \vec{x} satisifes simultaneously the system of equations

$$
\begin{aligned}
& \mathrm{ev}_{0} \circ S(\vec{x})=.4 \\
& \mathrm{ev}_{1} \circ S(\vec{x})=1.2 \\
& \mathrm{ev}_{2} \circ S(\vec{x})=-.2 \\
& \mathrm{ev}_{3} \circ S(\vec{x})=0
\end{aligned}
$$

Translating problems to \mathbb{R}^{n}

Now $\mathrm{ev}_{k} \circ S: \mathbb{R}^{4} \rightarrow \mathbb{R}$ are linear maps, whence they are matrix transformations! Their standard matrices compute as

$$
\begin{aligned}
& A_{\mathrm{ev}_{0} \circ S}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \\
& A_{\mathrm{ev}_{1} \circ S}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \\
& A_{\mathrm{ev}_{2} \circ S}=\left[\begin{array}{llll}
1 & 2 & 4 & 8
\end{array}\right] \\
& A_{\mathrm{ev}_{3} \circ S}=\left[\begin{array}{llll}
1 & 3 & 9 & 27
\end{array}\right]
\end{aligned}
$$

And we have to solve the matrix equation

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right] \cdot \vec{x}=\left[\begin{array}{c}
.4 \\
1.2 \\
-.2 \\
0
\end{array}\right]
$$

Translating problems to \mathbb{R}^{n}

Solving the matrix equation we obtain $\vec{x}=\left[\begin{array}{c}.4 \\ \frac{19}{6} \\ -3 \\ \frac{19}{30}\end{array}\right]$
Hence $S(\vec{x})=.4+\frac{19}{6} t-3 t^{2}+\frac{19}{30} t^{3}$ solves the problem.

