TMA 4115 Matematikk 3
 Lecture 2 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

8. January 2014

Complex numbers

A complex number is an expression

$$
a+i b \quad \text { (may also write } \quad a+b i)
$$

where a, b are real numbers and i the imaginary unit $\left(i^{2}=-1\right)$
Representations of the complex number w:
$a+i b$ normal form (also called standard form), $\operatorname{Re}(w)=a$ and $\operatorname{lm}(w)=b$
(a, b) cartesian coordinates for the the complex plane
(r, θ) polar coordinates for the complex plane and $w \neq 0$.

How do we obtain r and θ for $w=a+i b$?

Thus $r=|w|$ and $\theta=\operatorname{Arg}(w)$

How to compute (r, θ) from $w=a+i b$?

We know

$$
\begin{array}{r}
r=|w|=\sqrt{a^{2}+b^{2}} \\
\tan (\theta)=\tan (\arg (a+b i))=\frac{b}{a}
\end{array}
$$

Warning: Your calculator can compute $\tan ^{-1}\left(\frac{b}{a}\right)$ but:

$$
\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}\left(\frac{-b}{-a}\right)
$$

Problem: Same number, but the angle should be different! Solution: Use the two variable arctan function (called atan2) or use $\tan ^{-1}$ and the formula for atan2 on Wikipedia http://en.wikipedia.org/wiki/Atan2

Recovering coordinates from (r, θ).

Use Pythagoras Theorem and basic geometry:

