TMA 4115 Matematikk 3 Lecture 22 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

19. March 2014

Eigenvector and eigenvalue

Let A be a square matrix. A vector $\overrightarrow{x} \neq \overrightarrow{0}$ is called **eigenvector**, if

$$A\overrightarrow{x} = \lambda\overrightarrow{x}$$
 for some scalar λ

Then we call λ an **eigenvalue** of *A*.

Notice: Eigenvectors must be non-zero, but eigenvalues can be zero:

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \cdot \overrightarrow{x} = \overrightarrow{0} = 0 \overrightarrow{x}$$

so each $\overrightarrow{x} \in \mathbb{R}^2$ with $\overrightarrow{x} \neq \overrightarrow{0}$ is an eigenvector for the zero matrix, whose only eigenvalue is 0.

Let \overrightarrow{v} and \overrightarrow{w} be eigenvectors associated to the eigenvalue λ and $\mu \neq 0$ a scalar. If $\overrightarrow{v} + \overrightarrow{w} \neq 0$ then $\overrightarrow{v} + \overrightarrow{w}$ is an eigenvector associated to λ . Also $\mu \overrightarrow{v}$ is an eigenvector associated to λ .

How to find eigenvalues?

Example: Find the eigenvalues for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.

Calculate the roots of the characteristic polynomial

det
$$(A - \lambda I_2) = det \begin{pmatrix} \begin{bmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{bmatrix} \end{pmatrix}$$

= $(1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = (\lambda - 0)(\lambda - 2)$

Roots of the characteristic polynomial = eigenvalues.

The roots (=eigenvalues) are $\lambda = 0$ and $\lambda = 2$, both have (algebraic-) multiplicity 1.

After finding the eigenvalues 0, 2 we calculate eigenvectors. Start for $\lambda = 0$ by Gaussian elimination: Find a non trivial solution of $(A - 0I_2)\vec{x} = \vec{0}: A - 0I_2 \rightsquigarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ An eigenvector associated to 0 is $\overrightarrow{x} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$.

Similarly we find the eigenvector associated to 2: $\overrightarrow{y} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$.

Everything along the red line gets multiplied by 0. the blue line gets multiplied by 2.

Observation

The eigenvectors \overrightarrow{x} and \overrightarrow{y} form a basis \mathcal{B} for \mathbb{R}^2 .

For a vector \overrightarrow{x} the matrix acts on the \mathcal{B} -coordinates $\left[\overrightarrow{x}\right]_{\mathcal{B}}$ by scalar multiplication.

 \rightarrow The matrix acts on this basis like a diagonal matrix!

Idea: Can we use eigenvectors to transform the given matrix into a diagonal matrix?

17.4 Diagonalisation of matrices

Let A be a $n \times n$ matrix. We want to find a similar diagonal matrix (if possible). Do the following

- 1. Compute the eigenvalues of A
- 2. Compute the eigenvectors associated to the eigenvalues. (Gaussian elimination!)
- Check if we have *n* linear independent eigenvectors.
 Hint: Eigenvectors of different eigenvalues are always linearly independent. By construction the eigenvectors produced in 2. are linearly independent. Check if 2. produces *n* eigenvectors!
- 4. Order the eigenvectors and write them as columns in a matrix (this is *P*)
- 5. Construct a diagonal matrix D whose main diagonal entries are the eigenvalues corresponding to the columns in P.
- 6. Then $A = PDP^{-1}$