TMA 4115 Matematikk 3
 Lecture 22 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
19. March 2014

Eigenvector and eigenvalue

Let A be a square matrix. A vector $\vec{x} \neq \overrightarrow{0}$ is called eigenvector, if

$$
A \vec{x}=\lambda \stackrel{\rightharpoonup}{x} \quad \text { for some scalar } \lambda
$$

Then we call λ an eigenvalue of A.
Notice: Eigenvectors must be non-zero, but eigenvalues can be zero:

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \cdot \vec{x}=\overrightarrow{0}=0 \vec{x}
$$

so each $\vec{x} \in \mathbb{R}^{2}$ with $\vec{x} \neq \overrightarrow{0}$ is an eigenvector for the zero matrix, whose only eigenvalue is 0 .

Let \vec{v} and \vec{w} be eigenvectors associated to the eigenvalue λ and $\mu \neq 0$ a scalar.
If $\vec{v}+\vec{w} \neq 0$ then $\vec{v}+\vec{w}$ is an eigenvector associated to λ. Also $\mu \vec{v}$ is an eigenvector associated to λ.

How to find eigenvalues?

Example: Find the eigenvalues for $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$.
Calculate the roots of the characteristic polynomial

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{2}\right) & =\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right]\right) \\
& =(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda=(\lambda-0)(\lambda-2)
\end{aligned}
$$

Roots of the characteristic polynomial $=$ eigenvalues.

The roots (=eigenvalues) are $\lambda=0$ and $\lambda=2$, both have (algebraic-) multiplicity 1.

After finding the eigenvalues 0,2 we calculate eigenvectors. Start for $\lambda=0$ by Gaussian elimination: Find a non trivial solution of $\left(A-0 I_{2}\right) \vec{x}=\overrightarrow{0}: A-0 I_{2} \rightsquigarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$

An eigenvector associated to 0 is $\vec{x}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
Similarly we find the eigenvector associated to $2: \vec{y}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Everything along the red line gets multiplied by 0 . the blue line gets multiplied by 2 .

Observation

The eigenvectors \vec{x} and \vec{y} form a basis \mathcal{B} for \mathbb{R}^{2}.
For a vector \vec{x} the matrix acts on the \mathcal{B}-coordinates $[\vec{x}]_{\mathcal{B}}$ by scalar multiplication.
\rightarrow The matrix acts on this basis like a diagonal matrix!
Idea: Can we use eigenvectors to transform the given matrix into a diagonal matrix?

17.4 Diagonalisation of matrices

Let A be a $n \times n$ matrix. We want to find a similar diagonal matrix (if possible). Do the following

1. Compute the eigenvalues of A
2. Compute the eigenvectors associated to the eigenvalues. (Gaussian elimination!)
3. Check if we have n linear independent eigenvectors.

Hint: Eigenvectors of different eigenvalues are always linearly independent. By construction the eigenvectors produced in 2. are linearly independent. Check if 2. produces n eigenvectors!
4. Order the eigenvectors and write them as columns in a matrix (this is P)
5. Construct a diagonal matrix D whose main diagonal entries are the eigenvalues corresponding to the columns in P.
6. Then $A=P D P^{-1}$

