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Eigenvector and eigenvalue

Let A be a n × n-matrix. Eigenvector ⇀x with eigenvalue λ if

A⇀x = λ⇀x holds for the scalar λ.

The matrix A is called diagonalizable if
there is an invertible matrix P and a diagonal matrix D with

A = PDP−1.

Equivalently: Rn has a basis of eigenvectors of A



Complex Eigenvalues

A real n × n matrix A can have complex eigenvalues.
Those always appear as conjugate pairs λ, λ.

To find eigenvectors for the eigenvalue λ with Im(λ) 6= 0, we let A
act on Cn. The associated eigenvector ⇀v is a complex vector.

The complex conjugate of ⇀v is an eigenvector for λ.

Revisiting example 18.3

A =

[
.5 −.6
.75 1.1

]
eigenvalues .8± .6i with eigenvectors

[
2± 4i

5

]
.

Does the complex eigenvalue determine the behavior of the action
of the matrix on points?



Matrices with complex eigenvalue

What happens if we apply A from 18.3 again and again?
Example point (2, 0):

-2 -1 1 2

-2

-1

1

2

Observation: The path of the point seems to be an ellipsis.
Is this typical?



18.5 Theorem

Let A be a real 2× 2 matrix with complex eigenvalue λ = a + ib
(b 6= 0) and associated eigenvector ⇀v ∈ C2. Then

A = PCP−1 where P =
[
Re(⇀v )Im(⇀v )

]
and C =

√
a2 + b2

[
cosϕ − sinϕ
sinϕ cosϕ

]

here ϕ is the angle between the positive x -axis and the ray from
(0, 0) through (a, b), i.e. ϕ = Arg (λ)

Note: A complex eigenvalue whose imaginary part is not 0 lets A
act up to coordinate change as a rotation on R2.

A generalized version of the theorem holds for Rn.



Another exam problem

Kont 2012, Problem 7
Two water tanks, T1 and T2, each with volume V = 100 litre, are
connected together with pipes as shown in the figure below.

q

q

T1 T2x1(t) x2(t)

The tanks are filled with salt water; x1(t) and x2(t) are the mass in
grammes of salt in the respective tanks at time t. Salt water flows
from tank T1 to tank T2, and equally from T2 to T1, at the rate
q = 1 litres per second in each direction. We ignore the volume of
the pipes, and assume instantaneous mixing of salt water [. . . ] Let
x1(0) = 100g and x2(0) = 0g . At what time is x2(t) = 25g?



Observation

We need to find two unknown (differentiable) functions. Varying
time from t to t + ∆t we see

x1(t + ∆t) = x1(t)− ∆t
100x1(t) +

∆t
100x2(t)

x2(t + ∆t) = x2(t) +
∆t
100x1(t)− ∆t

100x2(t)

For ∆t → 0 we see

x ′1(t) = − 1
100x1(t) +

1
100x2(t)

x ′2(t) =
1

100x1(t)− 1
100x2(t)

This combines linear systems and linear differential equations!



19.1 Definition

A system of linear differential equations is given by

x ′1 = a11x1 + · · ·+ a1nxn

x ′2 = a21x2 + · · ·+ a2nxn
...

...
x ′n = an1x1 + · · ·+ annxn

Here x1, . . . , xn are unknown differentiable functions of t with
derivatives x ′1, . . . , x ′n and the aij are linear.

A solution to the system is a family of differentiable functions
x1, . . . , xn such that the equations are simultaneously true.

Note: We have exactly as many unknown functions as there are
equations!



Rewriting the system as a matrix equation

We can construct vectors from differentiable functions and define a
derivative component wise:

⇀x (t) =


x1(t)
x2(t)

...
xn(t)

 , ⇀x ′(t) =


x ′1(t)
x ′2(t)

...
x ′n(t)


Addition and scalar multiplication for these vectors of functions
works again component wise.
For a matrix A =

[
⇀a 1 · · ·⇀a n

]
define as usual

A⇀x (t) = ⇀a 1x1(t) + · · ·⇀a nxn(t)



With A =
[
aij

]
1≤i ,j≤n

the system of linear differential equations
can be rewritten as a matrix equation:

⇀x ′(t) = A⇀x (t)

Example: The system from the exam reads in matrix form

⇀x ′(t) =
1

100

[
−1 1
1 −1

]
⇀x (t)

To find a strategy to solve such systems we consider first the
special case when the matrix A is a diagonal matrix.



Strategy to solve systems of linear differential equations
Consider the system of linear differential equations ⇀x ′(t) = A⇀x .
Note: A must be diagonalizable for this method to work!

1. Compute the eigenvalues {λ1, . . . , λk } of A together with a
basis of eigenvectors {⇀v 1, . . . ,

⇀v k }.
2. For each ⇀v r let λr be the associated eigenvalue. The general

solution is then

⇀x (t) =
n∑

i=1
cieλi t⇀v i (1)

3. If there are initial conditions, choose the ci in the general
solution (1) such that

⇀x (0) =
n∑

i=1
ci
⇀v i .

Then (1) with these coefficients solves the problem with given
initial conditions.



Strategy to solve systems of linear differential equations II

If we are given a real matrix which is only diagonalisable over C,
we have to modify (1):

4. For each complex eigenvalue λ = a + ib with complex
eigenvector ⇀v λ = ⇀v r + i⇀v i the corresponding part of the
general solution is:

(r(cos(bt)⇀v r − sin(bt)⇀v i ) + s(cos(bt)⇀v i + sin(bt)⇀v r ))eat

for r , s ∈ R.
Thhen we remove the part of the general solution
corresponding to the conjugate eigenvalue λ



Eigenvalues govern the behavior of solutions
Its not always practical to solve systems of differential equations in
the above way. However, the eigenvalues govern the behaviour of
the system:

I The eigenvalue λ with the largest absolute value dominates
the behaviour. For almost all initial conditions,
⇀x (t)→ eλt⇀v λ

I If all eigenvalues are positive, ⇀x (t) grows exponentially
(except for ⇀0 ). The origin is called a source.

I If all eigenvalues are negative, ⇀x (t)→⇀0 exponentially. The
origin is called a sink.

I If some are positive and some negative, then for some starting
conditions ⇀x (t)→⇀0 but for the rest ⇀x (t) will grow
exponentially. The origin is called a saddle.

I If the eigenvalues are complex, previous points apply to their
real part. The imaginary part adds in a rotation component.
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