TMA 4115 Matematikk 3
 Lecture 23 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
25. March 2014

Eigenvector and eigenvalue

Let A be a $n \times n$-matrix. Eigenvector \vec{x} with eigenvalue λ if

$$
A \vec{x}=\lambda \stackrel{\rightharpoonup}{x} \quad \text { holds for the scalar } \lambda
$$

The matrix A is called diagonalizable if there is an invertible matrix P and a diagonal matrix D with

$$
A=P D P^{-1}
$$

Equivalently: \mathbb{R}^{n} has a basis of eigenvectors of A

Complex Eigenvalues

A real $n \times n$ matrix A can have complex eigenvalues.
Those always appear as conjugate pairs $\lambda, \bar{\lambda}$.
To find eigenvectors for the eigenvalue λ with $\operatorname{Im}(\lambda) \neq 0$, we let A act on \mathbb{C}^{n}. The associated eigenvector \vec{v} is a complex vector.

The complex conjugate of \vec{v} is an eigenvector for $\bar{\lambda}$.

Revisiting example 18.3
$A=\left[\begin{array}{cc}.5 & -.6 \\ .75 & 1.1\end{array}\right]$ eigenvalues $.8 \pm .6 i$ with eigenvectors $\left[\begin{array}{c}2 \pm 4 i \\ 5\end{array}\right]$.
Does the complex eigenvalue determine the behavior of the action of the matrix on points?

Matrices with complex eigenvalue

What happens if we apply A from 18.3 again and again? Example point $(2,0)$:

Observation: The path of the point seems to be an ellipsis. Is this typical?

18.5 Theorem

Let A be a real 2×2 matrix with complex eigenvalue $\lambda=a+i b$ $(b \neq 0)$ and associated eigenvector $\vec{v} \in \mathbb{C}^{2}$. Then

$$
\begin{aligned}
A=P C P^{-1} \text { where } P & =[\operatorname{Re}(\stackrel{\rightharpoonup}{v}) \operatorname{lm}(\stackrel{\rightharpoonup}{v})] \\
\text { and } C & =\sqrt{a^{2}+b^{2}}\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
\end{aligned}
$$

here φ is the angle between the positive x-axis and the ray from $(0,0)$ through (a, b), i.e. $\varphi=\operatorname{Arg}(\lambda)$

Note: A complex eigenvalue whose imaginary part is not 0 lets A act up to coordinate change as a rotation on \mathbb{R}^{2}.

A generalized version of the theorem holds for \mathbb{R}^{n}.

Another exam problem

Kont 2012, Problem 7

Two water tanks, T_{1} and T_{2}, each with volume $V=100$ litre, are connected together with pipes as shown in the figure below.

The tanks are filled with salt water; $x_{1}(t)$ and $x_{2}(t)$ are the mass in grammes of salt in the respective tanks at time t. Salt water flows from tank T_{1} to tank T_{2}, and equally from T_{2} to T_{1}, at the rate $q=1$ litres per second in each direction. We ignore the volume of the pipes, and assume instantaneous mixing of salt water [...] Let $x_{1}(0)=100 g$ and $x_{2}(0)=0 g$. At what time is $x_{2}(t)=25 g$?

Observation

We need to find two unknown (differentiable) functions. Varying time from t to $t+\Delta t$ we see

$$
\begin{aligned}
& x_{1}(t+\Delta t)=x_{1}(t)-\frac{\Delta t}{100} x_{1}(t)+\frac{\Delta t}{100} x_{2}(t) \\
& x_{2}(t+\Delta t)=x_{2}(t)+\frac{\Delta t}{100} x_{1}(t)-\frac{\Delta t}{100} x_{2}(t)
\end{aligned}
$$

For $\Delta t \rightarrow 0$ we see

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-\frac{1}{100} x_{1}(t)+\frac{1}{100} x_{2}(t) \\
& x_{2}^{\prime}(t)=\frac{1}{100} x_{1}(t)-\frac{1}{100} x_{2}(t)
\end{aligned}
$$

This combines linear systems and linear differential equations!

19.1 Definition

A system of linear differential equations is given by

$$
\begin{array}{cc}
x_{1}^{\prime}=a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
x_{2}^{\prime}= & a_{21} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots & \vdots \\
x_{n}^{\prime} & =a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{array}
$$

Here x_{1}, \ldots, x_{n} are unknown differentiable functions of t with derivatives $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ and the $a_{i j}$ are linear.

A solution to the system is a family of differentiable functions x_{1}, \ldots, x_{n} such that the equations are simultaneously true.

Note: We have exactly as many unknown functions as there are equations!

Rewriting the system as a matrix equation

We can construct vectors from differentiable functions and define a derivative component wise:

$$
\vec{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \quad \vec{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

Addition and scalar multiplication for these vectors of functions works again component wise.
For a matrix $A=\left[\vec{a}_{1} \ldots \vec{a}_{n}\right]$ define as usual

$$
A \vec{x}(t)=\vec{a}_{1} x_{1}(t)+\cdots \vec{a}_{n} x_{n}(t)
$$

With $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ the system of linear differential equations can be rewritten as a matrix equation:

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Example: The system from the exam reads in matrix form

$$
\vec{x}^{\prime}(t)=\frac{1}{100}\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \vec{x}(t)
$$

To find a strategy to solve such systems we consider first the special case when the matrix A is a diagonal matrix.

Strategy to solve systems of linear differential equations

Consider the system of linear differential equations $\vec{x}^{\prime}(t)=A \vec{x}$.
Note: A must be diagonalizable for this method to work!

1. Compute the eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ of A together with a basis of eigenvectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.
2. For each \vec{v}_{r} let λ_{r} be the associated eigenvalue. The general solution is then

$$
\begin{equation*}
\vec{x}(t)=\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t} \vec{v}_{i} \tag{1}
\end{equation*}
$$

3. If there are initial conditions, choose the c_{i} in the general solution (1) such that

$$
\vec{x}(0)=\sum_{i=1}^{n} c_{i} \vec{v}_{i}
$$

Then (1) with these coefficients solves the problem with given initial conditions.

Strategy to solve systems of linear differential equations II

If we are given a real matrix which is only diagonalisable over \mathbb{C}, we have to modify (1):
4. For each complex eigenvalue $\lambda=a+i b$ with complex eigenvector $\vec{v}_{\lambda}=\vec{v}_{r}+i \vec{v}_{i}$ the corresponding part of the general solution is:

$$
\left(r\left(\cos (b t) \vec{v}_{r}-\sin (b t) \vec{v}_{i}\right)+s\left(\cos (b t) \vec{v}_{i}+\sin (b t) \vec{v}_{r}\right)\right) e^{a t}
$$

for $r, s \in \mathbb{R}$.
Thhen we remove the part of the general solution corresponding to the conjugate eigenvalue $\bar{\lambda}$

Eigenvalues govern the behavior of solutions

Its not always practical to solve systems of differential equations in the above way. However, the eigenvalues govern the behaviour of the system:

- The eigenvalue λ with the largest absolute value dominates the behaviour. For almost all initial conditions, $\vec{x}(t) \rightarrow e^{\lambda t} \vec{v}_{\lambda}$
- If all eigenvalues are positive, $\vec{x}(t)$ grows exponentially (except for $\overrightarrow{0}$). The origin is called a source.
- If all eigenvalues are negative, $\vec{x}(t) \rightarrow \overrightarrow{0}$ exponentially. The origin is called a sink.
- If some are positive and some negative, then for some starting conditions $\vec{x}(t) \rightarrow \overrightarrow{0}$ but for the rest $\vec{x}(t)$ will grow exponentially. The origin is called a saddle.
- If the eigenvalues are complex, previous points apply to their real part. The imaginary part adds in a rotation component.

