# TMA 4115 Matematikk 3 <br> Lecture 24 for MBIOT5, MTKJ, MTNANO 

Alexander Schmeding

NTNU
26. March 2014

### 19.1 Definition

A system of linear differential equations is given by

$$
\begin{array}{cc}
x_{1}^{\prime}=a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
x_{2}^{\prime}= & a_{21} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots & \vdots \\
x_{n}^{\prime} & =a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{array}
$$

Here $x_{1}, \ldots, x_{n}$ are unknown differentiable functions of $t$ with derivatives $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ and the $a_{i j}$ are linear.

A solution to the system is a family of differentiable functions $x_{1}, \ldots, x_{n}$ such that the equations are simultaneously true.

With $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ the system of linear differential equations can be rewritten as a matrix equation:

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

## Strategy to solve systems of linear differential equations

We can solve the system of linear differential equations $\vec{x}^{\prime}(t)=A \vec{x}$ if $A$ is diagonalizable. General strategy:

1. Compute eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ with eigenvectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ of $A$ to find a general solution

$$
\begin{equation*}
\vec{x}(t)=\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t} \vec{v}_{i} \tag{1}
\end{equation*}
$$

2. If an eigenvalues $\lambda=a+i b$ is complex, the general solution is complex and we have to construct a real valued solution. Omit the part corresponding to the complex conjugate $\bar{\lambda}$ and replace the $\lambda$ part in (1) by
$\left(r\left(\cos (b t) \vec{v}_{r}-\sin (b t) \vec{v}_{i}\right)+s\left(\cos (b t) \vec{v}_{i}+\sin (b t) \vec{v}_{r}\right)\right) e^{a t}$,
for $r, s \in \mathbb{R}$
3. With initial conditions, choose $c_{i}$ in (1) such that

$$
\vec{x}(0)=\sum_{i=1}^{n} c_{i} \vec{v}_{i} .
$$

## Geometry of $\mathbb{R}^{2}$ : Length of vectors

Length in 2d:


Pythagoras: length of $\left[\begin{array}{l}a \\ b\end{array}\right]$ is $\sqrt{a^{2}+b^{2}}$

Length in 3d:


Pythagoras: length of $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

## Distance between two vectors

The length of vectors allows us to measure the distance between points:


We view $\|\vec{u}-\vec{v}\|$ as the distance between $\vec{u}$ and $\vec{v}$ and set $\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|$.

Note: $\|\vec{u}-\vec{v}\|=\|\vec{v}-\vec{u}\|$.

## Pythagoras Theorem in 2d

If the two vectors $\vec{u}$ and $\vec{v}$ in $\mathbb{R}^{2}$ meet in a right angle, we say they are perpendicular (or orthogonal) to each other:


Pythagoras theorem then states:

$$
\begin{equation*}
\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2} \tag{2}
\end{equation*}
$$

Comparing both sides of (2), the equation holds if and only if:

$$
\vec{u} \cdot \vec{v}=0
$$

Idea: Use this to define orthogonal vectors in general settings.

