TMA 4115 Matematikk 3 Lecture 25 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

1. April 2014

Inner product, length and orthogonality

Let \overrightarrow{x} , \overrightarrow{y} be vectors in \mathbb{R}^n with components x_i and y_i , respectively.

Dot product/ Inner product $\overrightarrow{x} \cdot \overrightarrow{y} = \overrightarrow{x}^T \overrightarrow{y} = \sum_{i=1}^n x_i y_i$.

Can use this to define

- Length of a vector: $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$,
- **Distance** between \overrightarrow{x} and \overrightarrow{y} : dist $(\overrightarrow{u}, \overrightarrow{v}) = \|\overrightarrow{u} \overrightarrow{v}\|$,
- **Orthogonality** of vectors: \overrightarrow{x} and \overrightarrow{y} are orthogonal to each other if and only if $\overrightarrow{x} \cdot \overrightarrow{y} = 0$.

Orthogonal Complement

Let $W \subseteq \mathbb{R}^n$ be non-empty. We say

- $\overrightarrow{z} \in \mathbb{R}^n$ is orthogonal to W if $\forall \overrightarrow{v} \in W$ we have $\overrightarrow{v} \cdot \overrightarrow{z} = 0$
- The set W[⊥] of all vectors in ℝⁿ orthogonal to W is called the orthogonal complement of W.

Example: $\{\overrightarrow{0}\}^{\perp} = \mathbb{R}^n \text{ and } (\mathbb{R}^n)^{\perp} = \{\overrightarrow{0}\}.$

$$\begin{split} & L = \text{span}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \subseteq \mathbb{R}^2 \text{ then } L^{\perp} = \text{span}\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}.\\ & \text{furthermore } \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}^{\perp} = \text{span}\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} = L^{\perp} \end{split}$$

If P is the x - y-plane in \mathbb{R}^3 then $P^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

Splitting forces in physics

Want to split a force into independent components. Say we know the weight of a block on a slope:

Can compute \overrightarrow{F}_G from the weight but we want: \overrightarrow{F} , the force acting on the block in the direction of the slope.

Note: \overrightarrow{F} and \overrightarrow{H} are orthogonal! \rightarrow Idea: split \overrightarrow{F}_{G} in orthogonal components

Nearest points on subspaces

We can view the result of the orthogonal projection as a nearest point on a given subspace in \mathbb{R}^n .

21.7 The Gram-Schmidt Process

Let $\{\overrightarrow{x}_1, \ldots, \overrightarrow{x}_p\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^n$.Define

$$\vec{v}_{1} = \vec{x}_{1}$$

$$\vec{v}_{2} = \vec{x}_{2} - \frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}$$

$$\vec{v}_{3} = \vec{x}_{3} - \frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} - \frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}$$

$$\vdots = \vdots \qquad \vdots$$

$$\vec{v}_{p} = \vec{x}_{p} - \sum_{i=1}^{p-1} \frac{\vec{x}_{p} \cdot \vec{v}_{i}}{\vec{v}_{i} \cdot \vec{v}_{i}} \vec{v}_{i}$$

Then $\{\overrightarrow{v}_1, \dots, \overrightarrow{v}_p\}$ is an orthogonal basis for W and in addition span $\{\overrightarrow{v}_1, \dots, \overrightarrow{v}_k\} = \text{span } \{\overrightarrow{x}_1, \dots, \overrightarrow{x}_k\}$ for $1 \le k \le p$