TMA 4115 Matematikk 3
 Lecture 25 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

1. April 2014

Inner product, length and orthogonality

Let \vec{x}, \vec{y} be vectors in \mathbb{R}^{n} with components x_{i} and y_{i}, respectively.
Dot product/ Inner product $\vec{x} \cdot \vec{y}=\vec{x}^{T} \vec{y}=\sum_{i=1}^{n} x_{i} y_{i}$.
Can use this to define

- Length of a vector: $\|\vec{x}\|=\sqrt{\vec{x} \cdot \vec{x}}$,
- Distance between \vec{x} and $\vec{y}: \operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|$,
- Orthogonality of vectors: \vec{x} and \vec{y} are orthogonal to each other if and only if $\vec{x} \cdot \vec{y}=0$.

Orthogonal Complement

Let $W \subseteq \mathbb{R}^{n}$ be non-empty. We say

- $\vec{z} \in \mathbb{R}^{n}$ is orthogonal to W if $\forall \vec{v} \in W$ we have $\vec{v} \cdot \vec{z}=0$
- The set W^{\perp} of all vectors in \mathbb{R}^{n} orthogonal to W is called the orthogonal complement of W.
Example: $\{\overrightarrow{0}\}^{\perp}=\mathbb{R}^{n}$ and $\left(\mathbb{R}^{n}\right)^{\perp}=\{\overrightarrow{0}\}$.
$L=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{2}$ then $L^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
furthermore $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}=L^{\perp}$
If P is the $x-y$-plane in \mathbb{R}^{3} then $P^{\perp}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$

Splitting forces in physics

Want to split a force into independent components. Say we know the weight of a block on a slope:

Can compute \vec{F}_{G} from the weight but we want: \vec{F}, the force acting on the block in the direction of the slope.

Note: \vec{F} and \vec{H} are orthogonal!
\rightarrow Idea: split \vec{F}_{G} in orthogonal components

Nearest points on subspaces

We can view the result of the orthogonal projection as a nearest point on a given subspace in \mathbb{R}^{n}.

Consider a vector \vec{x} in \mathbb{R}^{3}
Nearest point \vec{v} on plane: of all plane points, \vec{v} minimizes distance to \vec{x}

Observe: $\vec{x}-\vec{v}$ is perpendicular to E (i.e. it is in E^{\perp})

21.7 The Gram-Schmidt Process

Let $\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^{n}$.Define

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \stackrel{\rightharpoonup}{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2} \\
& \vdots=\quad \vdots \\
& \vdots \\
& \vec{v}_{p}=\vec{x}_{p}-\sum_{i=1}^{p-1} \frac{\vec{x}_{p} \cdot \vec{v}_{i}}{\vec{v}_{i} \cdot \vec{v}_{i}} \vec{v}_{i}
\end{aligned}
$$

Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W and in addition

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\} \quad \text { for } 1 \leq k \leq p
$$

