TMA 4115 Matematikk 3
 Lecture 26 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
2. April 2014

Inner product, length and orthogonality

Let \vec{x}, \vec{y} be vectors in \mathbb{R}^{n} with components x_{i} and y_{i}, respectively.
Dot product/ Inner product $\vec{x} \cdot \vec{y}=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{n} x_{i} y_{i}$.
Define Orthogonality of vectors: \vec{x} and \vec{y} are orthogonal to each other if and only if $\vec{x} \cdot \vec{y}=0$.

For a subspace $W \subseteq \mathbb{R}^{n}$ we can split $\vec{y} \in \mathbb{R}^{n}$ into

$$
\vec{y}=\vec{y}_{W}+\vec{z}, \quad \vec{y}_{W} \in W, \vec{z} \in W^{\perp}
$$

and obtain an orthogonal projection proj $_{W}: \mathbb{R}^{n} \rightarrow W, \vec{y}^{\prime} \mapsto \vec{y}_{W}$. If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W, its easy to compute

$$
\vec{y}_{w}=\sum_{i=1}^{p} \frac{\vec{y}^{\vec{v}_{i} \cdot \vec{v}_{i}} \vec{v}_{i}}{\vec{v}_{i}}
$$

21.7 The Gram-Schmidt Process

Let $\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}$ be a basis for a non-zero subspace $W \subseteq \mathbb{R}^{n}$. Define

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2} \\
& \vdots=\quad \vdots \\
& \vdots \\
& \vec{v}_{p}=\vec{x}_{p}-\sum_{i=1}^{p-1} \frac{\vec{x}_{p} \cdot \vec{v}_{i}}{\vec{v}_{i} \cdot \vec{v}_{i}} \vec{v}_{i}
\end{aligned}
$$

Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W and in addition

$$
\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\} \quad \text { for } 1 \leq k \leq p
$$

Application for Gram-Schmidt

(Spring 2011 Problem 5)

(a) Find an orthogonal basis of $\operatorname{Col}(A)$ with

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
2 & 1 & 5 & -3 \\
-1 & -1 & -2 & 1
\end{array}\right]
$$

(b) Find for $\vec{y}=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$ the nearest point in $\operatorname{Col}(A)$

To run Gram-Schmidt we need a basis of $\operatorname{Col}(A)$ $(\rightarrow$ Gauss elimination on $A!$)

Alternatively, we can apply Gram-Schmidt to a generating system of $\operatorname{Col}(A)$. This is less work!
Let \vec{x}_{i} be the i-th column of A.

Gram Schmidt on a generating system

We note that all vectors in the generating set are non-zero. Thus
set $\vec{v}_{1}=\vec{x}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ then $\vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{v_{1} \cdot \frac{v_{1}}{v_{1}}} \vec{v}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$,
$\vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{v_{1} \cdot \frac{v_{1}}{v_{1}}} \vec{v}_{1}-\frac{\vec{x}_{3}}{v_{2} \cdot \frac{\vec{v}_{2}}{v_{2}}} \vec{v}_{2}=\overrightarrow{0}$
we get $\overrightarrow{0}$, so \vec{x}_{3} was already contained in the span of \vec{v}_{1}, \vec{v}_{2} \rightsquigarrow discard \vec{v}_{3} and continue with the next vector \vec{x}_{4}.

again the result ist $\overrightarrow{0}$ and we discard \vec{x}_{4}. Since it was the last, the orthogonal basis of $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]\right\}$

Application of Gram-Schmidt

To answer part (b), we recall the
21.6 Best approximation theorem Let $W \subseteq \mathbb{R}^{n}$ be a subspace and $\vec{y} \in \mathbb{R}^{n}$. Then $\vec{y}_{W}=\operatorname{proj}_{W}(\vec{y})$ is closest in W to \vec{y} :

$$
\|\vec{y}-\vec{y} w\|<\|\vec{y}-\vec{v}\|, \quad \vec{v} \in W \backslash\left\{\vec{y}_{w}\right\}
$$

We need to compute $\vec{y}_{\operatorname{Col}(A)}$ as the nearest point to \vec{y} in $\operatorname{Col}(A)$.
$\vec{y}_{\operatorname{Col}(A)}=\frac{\stackrel{\rightharpoonup}{y} \cdot \vec{v}_{1}}{v_{1} \cdot v_{1}} \vec{v}_{1}+\frac{\vec{y} \cdot \vec{v}_{2}}{v_{2} \cdot \frac{v_{2}}{v_{2}}} \vec{v}_{2}=\left[\begin{array}{c}0 \\ 5 \\ -2\end{array}\right]$

Weight of baggage

We want to know the weight x of our suitcase.
If it is too heavy we have to pay extra on the airplane and we don't want that.

Second scale

weight $x=x_{1} \mathrm{~kg}$ weight $x=x_{2} \mathrm{~kg} \quad$ weight $x=x_{3} \mathrm{~kg}$ What is the weight of our suitcase?

Weight of baggage II

From our scales we have the information:

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leftrightarrow \begin{cases}x & =x_{1} \\
x & =x_{2} \\
x & =x_{3}\end{cases}
$$

Unless $x_{1}=x_{2}=x_{3}$ holds (by chance), the linear system is inconsistent, i.e. there is no exact solution.

Problem: We want an "approximate" solution. This means a number y such that the errors $\left|x_{i}-y\right|$ are as small as possible.

Weight of baggage III

Idea: If $A \vec{x}=\vec{b}$ is inconsistent, approximate solution means an \vec{x} such that $A \vec{x}$ is as near as possible to the target vector \vec{b}.
$A \vec{x}$ minimizes the distance to \vec{b} if it is $\operatorname{proj}_{\operatorname{Col}(A)}(\vec{b})$!
This is in the column space, and we can then solve $A \vec{x}=\operatorname{proj}_{\operatorname{Col}(A)}(\vec{b})$.

In our example with $A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, we set $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and obtain

$$
\operatorname{proj}_{\operatorname{Col}(A)}(\vec{b})=\frac{\vec{b} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \overrightarrow{v_{1}}=\left[\begin{array}{c}
\frac{x_{1}+x_{2}+x_{3}}{3} \\
\frac{x_{1}+x_{2}+x_{3}}{3} \\
\frac{x_{1}+x_{2}+x_{3}}{3}
\end{array}\right]
$$

Thus $A x=\operatorname{proj}_{C o l(A)}(\vec{b})$ shows: $x=\frac{x_{1}+x_{2}+x_{3}}{3}$.

