TMA 4115 Matematikk 3 Lecture 27 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

8. April 2014

Least square solutions

Let A be an $m \times n$ matrix and $\overrightarrow{b} \in \mathbb{R}^m$. A vector $\overrightarrow{y} \in \mathbb{R}^n$ is called **least square solution** of $A\overrightarrow{x} = \overrightarrow{b}$ if

$$\|\overrightarrow{b} - A\overrightarrow{y}\| \le \|\overrightarrow{b} - A\overrightarrow{x}\|, \quad \text{for all } \overrightarrow{x} \in \mathbb{R}^n.$$

Note: A vector \overrightarrow{y} is a least square solution if and only if $A\overrightarrow{y} = \operatorname{proj}_{\operatorname{Col}(A)}(\overrightarrow{b})$

• It solves the normal equation $A^T A \overrightarrow{x} = A^T \overrightarrow{b}$

For every linear system there is a least square solution. If the system is inconsistent a least square solution is the best approximate solution we can get.

Revisiting example 21.9

22.7 Example, (Spring 2011 Problem 5)

Let
$$A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1 \end{bmatrix}$$
 and $\overrightarrow{b} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$. Find the nearest point in Col(A) to \overrightarrow{b} .

Avoid Gram-Schmidt and compute a least square solution \overrightarrow{y} to $A\overrightarrow{x} = \overrightarrow{b}$ the nearest point is then $A\overrightarrow{y}$. Try to solve the normal equation $A^T A\overrightarrow{x} = A^T \overrightarrow{b}$. However, we obtain

$$A^{\mathsf{T}}A = \begin{bmatrix} 6 & 6 & 12 & -6 \\ 6 & 11 & 7 & -1 \\ 12 & 7 & 29 & -17 \\ -6 & -1 & -17 & 11 \end{bmatrix}$$

Can we simplify the problem so that we do not need $A^T A$?

Revisiting example 21.9

Idea: The column space Col(A) is important not the matrix A! Use the method with an easier matrix B with Col(B) = Col(A).

In 21.9 we saw that
$$\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$
 and $\begin{bmatrix} 3\\1\\-1 \end{bmatrix}$ is a basis of Col(A). Thus
we set $B = \begin{bmatrix} 1 & 3\\2 & 1\\-1 & -1 \end{bmatrix}$ and compute with B:
 $B^{T}B = \begin{bmatrix} 6 & 6\\6 & 5 \end{bmatrix}, B^{T}\stackrel{\sim}{b} = \begin{bmatrix} 12\\7 \end{bmatrix}$

Solving $B^T B \overrightarrow{x} = B^T \overrightarrow{b}$ yields the least square solution $\begin{vmatrix} 3 \\ -1 \end{vmatrix}$

Revisiting example 21.9

Now the nearest point to \overrightarrow{b} in Col(A) = Col(B) is

$$B\begin{bmatrix}3\\-1\end{bmatrix} = \begin{bmatrix}0\\5\\-2\end{bmatrix}$$

as before!

Remark We can compute nearest points in a subspace by solving least square problems.

This avoids Gram-Schmidt, which will in general be quite a messy computation.

An observation

In setting up the normal equation we computed matrices of the form $A^T A$. Here are some examples:

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 17 \\ 17 & 81 \end{bmatrix}, \begin{bmatrix} 6 & 6 & 12 & -6 \\ 6 & 11 & 7 & -1 \\ 12 & 7 & 29 & -17 \\ -6 & -1 & -17 & 11 \end{bmatrix}$$

These matrices have an interesting structure: Taking their transpose we get back the same matrix!¹

We call these special matrices **symmetric** and will now investigate their properties.

¹Note that the rules for the transpose imply $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$.

23.13 Definition

A quadratic form $Q(\overrightarrow{x}) = \overrightarrow{x}^T A \overrightarrow{x}$ is called

- positive definite, if $Q(\overrightarrow{x}) > 0, \ \forall \overrightarrow{x} \neq \overrightarrow{0}$,
- negative definite, if $Q(\vec{x}) < 0, \ \forall \vec{x} \neq \vec{0}$,
- indefinite, if $Q(\overrightarrow{x})$ assumes both negative and positive values.

These properties are quite important in applications for quadratic forms. We shall discuss one after the next theorem.

23.14 Theorem

Let A be a symmetrix matrix and $Q(\overrightarrow{x}) = \overrightarrow{x}^T A \overrightarrow{x}$ be the associated quadratic form. Then Q is

- ▶ positive definite, if all eigenvalues of A are positive
- negative definite, if all eigenvalues of A are negative
- indefinite, if there are positive and negative eigenvalues

Application (in Calculus) Recall from calculus that for a (sufficiently) differentiable function $f : \mathbb{R} \to \mathbb{R}$ we know: If f'(x) = 0 and $f''(x) \neq 0$ then if f''(x) < 0 we have a local maximum at xif f''(x) > 0 we have a local minimum at x

Let now $f : \mathbb{R}^n \to \mathbb{R}$ be a (sufficiently) differentiable function. It turns out that a similar criterion holds in this case, but we need symmetric matrices!

Example in two dimensions

In calculus you learn how to compute for $\overrightarrow{x} \in \mathbb{R}^n$ the derivatives $f'(\overrightarrow{x})$ and $f''(\overrightarrow{x})$.

Furthermore, $f''(\overrightarrow{x})$ is determined by the **Hessian**

$$Hf(\overrightarrow{x}) = \left[\frac{\partial^2 f}{\partial_{x_i}\partial_{x_j}}(\overrightarrow{x})\right]_{1 \le i,j \le n}$$

Example Consider the function $f : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \cos(x) \sin(y)$. Then the Hessian computes as:

$$Hf\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = -\begin{bmatrix}\cos(x)\sin(y) & \sin(x)\cos(y)\\\sin(x)\cos(y) & \cos(x)\sin(y)\end{bmatrix}$$

It is a symmetric matrix².

Study maxima and minima via the Hessian!

²This is no coincidence, by Schwartz law the Hessian of each sufficiently differentiable function will be symmetric!

Example in two dimensions

The generalized criterion is: If $f'(\vec{x}) = \vec{0}$ and the Hessian $Hf(\vec{x})$ is

• positive definite, then f has a local minimum at \overrightarrow{x} ,

- negative definite, then f has a local maximum at \vec{x} ,
- indefinite, then f has a saddle point at \overrightarrow{x} ,

Using this technique one can compute the critical points of for example f(x, y) = cos(x) sin(y)

The graph of cos(x) sin(y):

