TMA 4115 Matematikk 3
 Lecture 27 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
8. April 2014

Least square solutions

Let A be an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$. A vector $\vec{y} \in \mathbb{R}^{n}$ is called least square solution of $A \vec{x}=\vec{b}$ if

$$
\|\vec{b}-A \vec{y}\| \leq\|\vec{b}-A \vec{x}\|, \quad \text { for all } \vec{x} \in \mathbb{R}^{n}
$$

Note: A vector \vec{y} is a least square solution if and only if

- $A \vec{y}=\operatorname{proj}_{\operatorname{Col}(A)}(\vec{b})$
- It solves the normal equation $A^{T} A \vec{x}=A^{T} \vec{b}$

For every linear system there is a least square solution. If the system is inconsistent a least square solution is the best approximate solution we can get.

Revisiting example 21.9

22.7 Example, (Spring 2011 Problem 5)

Let $A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$. Find the nearest
point in $\operatorname{Col}(A)$ to \vec{b}.
Avoid Gram-Schmidt and compute a least square solution \vec{y} to $A \vec{x}=\vec{b}$ the nearest point is then $A \vec{y}$. Try to solve the normal equation $A^{T} A \vec{x}=A^{T} \vec{b}$. However, we obtain

$$
A^{T} A=\left[\begin{array}{cccc}
6 & 6 & 12 & -6 \\
6 & 11 & 7 & -1 \\
12 & 7 & 29 & -17 \\
-6 & -1 & -17 & 11
\end{array}\right]
$$

Can we simplify the problem so that we do not need $A^{T} A$?

Revisiting example 21.9

Idea: The column space $\operatorname{Col}(A)$ is important not the matrix A ! Use the method with an easier matrix B with $\operatorname{Col}(B)=\operatorname{Col}(A)$.
In 21.9 we saw that $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]$ is a basis of $\operatorname{Col}(A)$. Thus
we set $B=\left[\begin{array}{cc}1 & 3 \\ 2 & 1 \\ -1 & -1\end{array}\right]$ and compute with B :

$$
B^{T} B=\left[\begin{array}{ll}
6 & 6 \\
6 & 5
\end{array}\right], B^{T} \vec{b}=\left[\begin{array}{c}
12 \\
7
\end{array}\right]
$$

Solving $B^{T} B \vec{x}=B^{T} \vec{b}$ yields the least square solution $\left[\begin{array}{c}3 \\ -1\end{array}\right]$

Revisiting example 21.9

Now the nearest point to \vec{b} in $\operatorname{Col}(A)=\operatorname{Col}(B)$ is

$$
B\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right]
$$

as before!
Remark We can compute nearest points in a subspace by solving least square problems.
This avoids Gram-Schmidt, which will in general be quite a messy computation.

An observation

In setting up the normal equation we computed matrices of the form $A^{T} A$. Here are some examples:

$$
\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right], \quad\left[\begin{array}{cc}
4 & 17 \\
17 & 81
\end{array}\right], \quad\left[\begin{array}{cccc}
6 & 6 & 12 & -6 \\
6 & 11 & 7 & -1 \\
12 & 7 & 29 & -17 \\
-6 & -1 & -17 & 11
\end{array}\right]
$$

These matrices have an interesting structure:
Taking their transpose we get back the same matrix! ${ }^{1}$
We call these special matrices symmetric and will now investigate their properties.
${ }^{1}$ Note that the rules for the transpose imply $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.

23.13 Definition

A quadratic form $Q(\vec{x})=\vec{x}^{\top} A \vec{x}$ is called

- positive definite, if $Q(\vec{x})>0, \forall \vec{x} \neq \overrightarrow{0}$,
- negative definite, if $Q(\vec{x})<0, \forall \vec{x} \neq \overrightarrow{0}$,
- indefinite, if $Q(\vec{x})$ assumes both negative and positive values.
These properties are quite important in applications for quadratic forms. We shall discuss one after the next theorem.

23.14 Theorem

Let A be a symmetrix matrix and $Q(\vec{x})=\vec{x}^{T} A \vec{x}$ be the associated quadratic form. Then Q is

- positive definite, if all eigenvalues of A are positive
- negative definite, if all eigenvalues of A are negative
- indefinite, if there are positive and negative eigenvalues

Application (in Calculus) Recall from calculus that for a (sufficiently) differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ we know: If $f^{\prime}(x)=0$ and $f^{\prime \prime}(x) \neq 0$ then
if $f^{\prime \prime}(x)<0$ we have a local maximum at x
if $f^{\prime \prime}(x)>0$ we have a local minimum at x
Let now $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a (sufficiently) differentiable function. It turns out that a similar criterion holds in this case, but we need symmetric matrices!

Example in two dimensions

In calculus you learn how to compute for $\vec{x} \in \mathbb{R}^{n}$ the derivatives $f^{\prime}(\vec{x})$ and $f^{\prime \prime}(\vec{x})$.

Furthermore, $f^{\prime \prime}(\vec{x})$ is determined by the Hessian

$$
H f(\vec{x})=\left[\frac{\partial^{2} f}{\partial x_{x_{i}} \partial_{x_{j}}}(\vec{x})\right]_{1 \leq i, j \leq n}
$$

Example Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto \cos (x) \sin (y)$. Then the Hessian computes as:

$$
H f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=-\left[\begin{array}{ll}
\cos (x) \sin (y) & \sin (x) \cos (y) \\
\sin (x) \cos (y) & \cos (x) \sin (y)
\end{array}\right]
$$

It is a symmetric matrix ${ }^{2}$.
Study maxima and minima via the Hessian!
${ }^{2}$ This is no coincidence, by Schwartz law the Hessian of each sufficiently differentiable function will be symmetric!

Example in two dimensions

The generalized criterion is: If $f^{\prime}(\vec{x})=\overrightarrow{0}$ and the Hessian $\operatorname{Hf}(\vec{x})$ is

- positive definite, then f has a local minimum at \vec{x},
- negative definite, then f has a local maximum at \vec{x},
- indefinite, then f has a saddle point at \vec{x},

Using this technique one can compute the critical points of for example $f(x, y)=\cos (x) \sin (y)$

The graph of $\cos (x) \sin (y)$:

