TMA 4115 Matematikk 3
 Lecture 3 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
14. January 2014

Complex numbers

For complex numbers we ...

- can compute sums, products, reciproals, quotients and n th-roots,
- use the polar form to compute products and n th-roots

The formula for nth roots in the last lecture contained an error. Thus we repeat the formulae:

n-th roots of complex numbers

Let $z=r(\cos (\theta)+i \sin (\theta)$ be a complex number and $n \in \mathbb{N}$.
We call

$$
z_{1}=\sqrt[n]{r}\left(\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right)
$$

the principal nth root of z.
Examples:
$z=i=1\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)$ the principal nth root is $\cos \left(\frac{\pi}{2 n}\right)+i \sin \left(\frac{\pi}{2 n}\right)$
$z=0$ the principal n-th root is 0 .

For $z \neq 0$ there are n distinct nth roots which can be computed via

$$
\begin{aligned}
z_{1} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right) \\
z_{2} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta+2 \pi}{n}\right)+i \sin \left(\frac{\theta+2 \pi}{n}\right)\right) \\
z_{3} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta+4 \pi}{n}\right)+i \sin \left(\frac{\theta+4 \pi}{n}\right)\right) \\
\vdots & \vdots \\
z_{n} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta+2(n-1) \pi}{n}\right)+i \sin \left(\frac{\theta+2(n-1) \pi}{n}\right)\right)
\end{aligned}
$$

Complex functions and the exponential map

Our next goal is to define functions depending on complex variables.

We need these functions to solve differential equations.
How do we define define a complex function?

- Copy the definition of a real function and use complex variables!

Real functions

Recall that a real function is a triple

$$
f: U \rightarrow V, x \mapsto f(x)
$$

where the parts of the triple are

$$
\begin{aligned}
& U \subseteq \mathbb{R} \text { the domain (i.e. the numbers we apply } f \text { to) } \\
& V \subseteq \mathbb{R} \text { the codomain (must contain all values of } f \text {) } \\
& x \mapsto f(x) \text { a rule assigning to each } x \text { an element } f(x)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& g:(0,1) \rightarrow(0, \infty), x \mapsto \frac{1}{x} \\
& \sin : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sin (x)
\end{aligned}
$$

Here (a, b) is the open interval from a to b.

