TMA 4115 Matematikk 3
 Lecture 4 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
15. January 2014

We already know how to solve the differential equations

$$
y^{\prime}(t)=\frac{d}{d t} y(t)=f(y, t)
$$

if the function f is "nice".
We call such an equation a first order differential equation, because it only involves the first derivative of the unknown y.

First order differential equations are "simple". The (physical) world is complicated, hence (in general) more complicated differential equations describe the real world.

3.1 Newtons second law

The acceleration a of a body with mass m is proportional to the net force F via

$$
\begin{equation*}
F=m a \tag{1}
\end{equation*}
$$

Question: What is the displacement $y(t)$ of the body from a reference point?

Notice:
Acceleration a is rate of change of velocity v, i.e. $a=\frac{d}{d t} v=v^{\prime}$
Velocity v is rate of change of the displacement, i.e. $v=\frac{d}{d t} y=y^{\prime}$
The net force F usually depends on time t, velocity and displacement, i.e. $F=F(t, y, v)=F\left(t, y, y^{\prime}\right)$

We can thus rewrite (1) as

$$
F\left(t, y, y^{\prime}\right)=m y^{\prime \prime}
$$

We call this a second order differential equation since it involves derivatives of y of up to second order.

3.2 Definition

A second order differential equation is an equation of the form

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} y(t)=f\left(y, \frac{d}{d t} y, t\right) \tag{2}
\end{equation*}
$$

where f is given function.
A solution to the second order equation (2) is a function y which is twice continuously differentiable and satisfies (2).

Usually we write $y^{\prime}=\frac{d}{d t} y(t)$ and $y^{\prime \prime}=\frac{d^{2}}{d t^{2}} y(t)$, thus (2) reads:

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \tag{3}
\end{equation*}
$$

3.3 The vibrating spring

We consider a spring suspended from a beam:

Attach weight m:
System rests in equilibrium at height x_{0}

Forces acting on weight: gravity $m g$ and restoring force $R(x)$ depending on the stretch distance x.

In equilibrium, the spring does not move.

3.3 The vibrating spring

We consider a spring suspended from a beam:

Stretch the spring: it leaves equilibrium

If we release the spring it will move!

Forces acting on weight in motion: damping force $D(v)$ depending on velocity v, external force $F(t)$ and $R(x), m g$.

A model for the displacement x of the spring

Recall: velocity $v=x^{\prime}$ and acceleration $a=v^{\prime}=x^{\prime \prime}$.
Then second Newtons law (1) yields

$$
\begin{align*}
m a & =\text { total force acting on the weight } \tag{4}\\
& =R(x)+m g+D(v)+F(t)
\end{align*}
$$

We rewrite (4) as

$$
\begin{equation*}
m x^{\prime \prime}=R(x)+m g+D\left(x^{\prime}\right)+F(t) \tag{5}
\end{equation*}
$$

For some springs Hooke's law states $R(x)=-k x$ for $k>0$ constant and small x.
Assuming Hooke's law, (4) becomes

$$
\begin{equation*}
m x^{\prime \prime}=-k x+m g+D\left(x^{\prime}\right)+F(t) \tag{6}
\end{equation*}
$$

Is there a solution for every 2nd order differential equation?

If the equation is "nice enough" there is a solution:

3.4 Theorem

Let $p(t), q(t)$ and $g(t)$ be functions which are continuous on the interval (α, β). Fix $t_{0} \in(\alpha, \beta)$ and $y_{0}, y_{1} \in \mathbb{R}$. There is one and only one function $y:(\alpha, \beta) \rightarrow \mathbb{R}$ which solves

$$
\left\{\begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad \text { for } t \in(\alpha, \beta) \tag{7}\\
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}
\end{array}\right.
$$

3.5 Remark: The solution of (7) is defined on all of (α, β) We need $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$ to get a unique solution.

Open Problem: How to find a solution?

