TMA 4115 Matematikk 3
 Lecture 5 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

21. January 2014

The order of a differential equation is the highest non-trivial derivative appearing.

We study linear (second order) differential equations:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where p, q and g are given functions.
If the forcing term g is 0 , we call the equation homogeneous, otherwise inhomogeneous.

An initial value problem (IVP) is a differential equation with enough initial values to specify a solution.

Theorem If p, q and g are continuous functions defined on (α, β) and $t_{0} \in(\alpha, \beta)$ the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \quad t \in(\alpha, \beta) \\
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}
\end{array}\right.
$$

has a unique solution.
Two functions $u, v:(\alpha, \beta) \rightarrow \mathbb{R}$ are linearly independent (on $(\alpha, \beta))$ if there is no $C \in \mathbb{R}$ with $u(t)=\operatorname{Cv}(t)$ for all $t \in(\alpha, \beta)$.

Test linear independence: Inspection or if u, v solve the same linear homogeneous differential equation use their Wronskian $W(t)=u(t) v^{\prime}(t)-v(t) u^{\prime}(t)$.

Structure of the general solution

3.18 Theorem Let y_{1}, y_{2} be linearly independent solutions to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Then the general solution to the differential equation is

$$
y(t)=A y_{1}(t)+B y_{2}(t)
$$

where $A, B \in \mathbb{R}$.
We call two linearly independent solutions for a second order homogeneous linear equation a fundamental set of solutions.

Strategy to solve homogeneous linear differential equations

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

- Find two linearly independent solutions u, v to the equation
- Check linear independence by inspection or by showing that their Wronskian $W(t)$ is non-zero
- Obtain general solution $A u+B v$

To solve the IVP $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$:

- Construct a general solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$
- Use $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1}$ to determine A and B

3.19 Example

We know that for $\omega \neq 0, \sin (\omega t)$ and $\cos (\omega t)$ solve

$$
\begin{equation*}
y^{\prime \prime}+\omega^{2} y=0 \tag{11}
\end{equation*}
$$

Their Wronskian is $W(t)=\omega\left(\cos (\omega t)^{2}+\sin (\omega t)^{2}\right)=\omega \neq 0$. Hence $\{\sin (\omega t), \cos (\omega t)\}$ is a fundamental set of solutions and

$$
y(t)=A \sin (\omega t)+B \cos (\omega t) A, B \in \mathbb{R} \text { (general solution) }
$$

To find the solution with initial condition $y(0)=2$ and $y^{\prime}(0)=1$ insert the values in the general solution:

$$
\begin{aligned}
& 2=y(0)=A \sin (0)+B \cos (0)=B \\
& 1=y^{\prime}(0)=A \omega \cos (0)-B \omega \sin (0)=A \omega
\end{aligned}
$$

Hence $y(t)=\frac{1}{\omega} \sin (\omega t)+2 \sin (\omega t)$ solves (11) with $y(0)=2$ and $y^{\prime}(0)=1$ (IVP).

Problem: How to find any solution?

We know what to do if we already found solutions to a linear homogeneous equation. However, how do we find these solutions?

Goal: Construct solutions for homogeneous linear equations with constant coefficients.

Idea: Consider

$$
y^{\prime}+q y=0, \quad q \in \mathbb{R}
$$

We know that $y(t)=C e^{-q t}$ solves the equation for all $C \in \mathbb{R}$.
Try $y(t)$ as a solution to a second order homogeneous equation.

