TMA 4115 Matematikk 3
 Lecture 6 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
22. January 2014

A linear (second order) differential equation

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g(t) \tag{1}
\end{equation*}
$$

where $p, q \in \mathbb{R}$ and g is a given function is called linear (inhomogeneous) differential equation with constant coefficients.

Solve the homogeneous equation associated to (1):

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=0 \tag{4}
\end{equation*}
$$

using the associated characteristic polynomial

$$
\begin{equation*}
\lambda^{2}+p \lambda+q=0 \tag{5}
\end{equation*}
$$

We distinguish three cases depending on the characteristic roots:

Solutions for equations with constant coefficients

Case $1 p^{2}-4 q>0$, i.e. two distinct, real roots λ_{1} and λ_{2}.
Fundamental set of solutions:

$$
y_{1}(t)=e^{\lambda_{1} t} \quad y_{2}(t)=e^{\lambda_{2} t}
$$

Case $2 p^{2}-4 q<0$, we have two distinct, complex roots $\lambda_{1}=a+i b$ and $\overline{\lambda_{1}}$. Fundamental set of (real valued) solutions:

$$
y_{1}(t)=e^{a t} \cos (b t) \quad y_{2}(t)=e^{a t} \sin (b t)
$$

Case $3 p^{2}-4 q=0$, there is one repeated real root λ_{1}. Fundamental set of solutions:

$$
y_{1}(t)=e^{\lambda_{1} t}, \quad y_{2}(t)=t e^{\lambda_{1} t}
$$

Harmonic motion

An important example of a linear equations with constant coefficients is the equation of harmonic motion

$$
\begin{equation*}
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=f(t) \tag{11}
\end{equation*}
$$

with $c, \omega_{0} \in \mathbb{R}$ and $f(t)$ a given function.
The parameters have special names (inspired by physical meaning):
c, the dampening parameter
ω_{0}, the natural frequency
$f(t)$, the forcing term
Example: The spring equation (Chapter 3 (6)):

$$
m x^{\prime \prime}=-k x+m g+D\left(x^{\prime}\right)+F(t)
$$

with $D\left(x^{\prime}\right)=-\mu x^{\prime}$ for $\mu \in[0, \infty)$ we obtain

$$
\begin{equation*}
x^{\prime \prime}+\frac{-\mu}{m} x^{\prime}+\frac{k}{m} x=\frac{F(t)}{m}+g \tag{12}
\end{equation*}
$$

Simple Harmonic motion

For $\mu=0=F(t)+m g$ we know a solution of (12):

$$
y(t)=\cos \left(\omega_{0} t\right)+\sin \left(\omega_{0} t\right)
$$

The solution is periodic with period $\omega_{0}=\sqrt{\frac{k}{m}}$.

No Damping: Solution oscillates with natural frequency (here $\omega_{0}=4$)

Harmonic motion with damping $\mu \neq 0$

Set $c=\frac{-\mu}{2 m}$. Several cases (see book), we only discuss $c<\omega_{0}$ with $c=1, \omega_{0}=4$. Solving (12) yields

$$
y(t)=e^{-c t}\left(a \cos \left(\sqrt{\omega_{0}^{2}-c^{2}} t\right)+b \sin \left(\sqrt{\omega_{0}^{2}-c^{2}} t\right)\right)
$$

We choose $a=b=1$ and plot the solution:

Damping present: Oscillation decreases with time.

5. Inhomogeneous equations: The method of

 undetermined coefficientsWe want to solve

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=f(t) \tag{1}
\end{equation*}
$$

5.1 Theorem Let $y_{p}(t)$ be a particular solution to the inhomogeneous problem (1) and $y_{1}(t), y_{2}(t)$ be a fundamental system of solutions for the associated homogeneous equation

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

Then the general solution to the inhomogeneous equation (1) is

$$
y(t)=y_{p}(t)+A y_{1}(t)+B y_{2}(t) \quad A, B \in \mathbb{R} .
$$

Strategy: First solve the homogeneous equation associated to (1), then construct a particular solution to (1)

Problem: How to find a particular solution?

We now introduce the method of undetermined coefficients.
Idea: Guess a particular solution based on the forcing term. Incorporate a parameter to stay flexible.

Guideline for the method

If the form of the forcing term f replicates under differentiation, look for a solution with the same form.

Overwiew: The method of undetermined coefficients

Forcing term $f(t)$	Trial solution	Comment
$e^{r t}$	$a e^{r t}$	
$\cos (\omega t)$ or $\sin (\omega t)$	$a \cos (\omega t)+b \sin (\omega t)$	
$P(t)$ Polynomial	$p(t)$ Polynomial	$P(t)$ and $p(t)$ have same degree, i.e.
Example: t^{2}	$a t^{2}+b t+c$	

Problem: If the trial solution is a solution of the homogeneous equation the above method does not work!
Solution: Try multiplying the trial solution with t, if that does not work multiply by t again.

