TMA 4115 Matematikk 3
 Lecture 7 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

28. January 2014

We want to find a general solution to the inhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=f(t) \tag{1}
\end{equation*}
$$

1. Construct a fundamental set of solutions y_{1}, y_{2} for the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$,
2. Find a particular solution $y_{p}(t)$ for (1),
3. The general solution is of the form

$$
y(t)=y_{p}(t)+A y_{1}(t)+B y_{2}(t), A, B \in \mathbb{R}
$$

4. To solve the (IVP): (1) and $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$: Insert numbers in general solution to determine A and B.

If the forcing term $f(t)$ is "nice" we can use the method of undetermined coefficients to compute y_{p} in step 2 .

Method of undetermined coefficients

Guess a particular solution based on the forcing term. Incorporate a parameter to stay flexible.

Guideline for the method

If the form of the forcing term f replicates under differentiation, look for a solution with the same form.

Problem: The method fails if the forcing term is not one of the functions we have trial solutions for.

6. Inhomogeneous equations: Variation of parameters

We want to construct solutions via "variation of parameters" for

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

Note: We do not assume constant coefficients here!
Idea: To find a particular solution for $y^{\prime}+q(t) y=f(t)$ we set

$$
y_{p}(t)=v(t) y_{h}(t)
$$

where y_{h} is a solution for the associated homogeneous equation and v is an unknown function. Differentiate to determine v. Copy this idea using a fundamental set of solutions y_{1}, y_{2}.

6.2 Summary of the method

- We need a fundamental set y_{1}, y_{2} of solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
- Define $y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$ with unknown functions v_{1}, v_{2}
- Solve

$$
\begin{aligned}
& v_{1}(t)=\int \frac{-y_{2}(t) f(t)}{y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)} d t \\
& v_{2}(t)=\int \frac{y_{1}(t) f(t)}{y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)} d t
\end{aligned}
$$

to obtain y_{p}.
Alternatively, if you can't remember the formula: Derive it as explained in the lecture 6.1.

Forced harmonic motion: Underdampend case

We consider a forced harmonic motion with a periodic forcing term

$$
\begin{equation*}
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=\cos (\omega t) \tag{6}
\end{equation*}
$$

with $c, \omega_{0} \in \mathbb{R}$ and
c, the dampening parameter
ω_{0}, the natural frequency
ω, the driving frequency
Consider undampened harmonic motion, i.e. $c=0$. A fundamental set of solutions for $y^{\prime \prime}+\omega_{0}^{2} y=0$ is

$$
y_{1}(t)=\cos \left(\omega_{0} t\right) \quad y_{2}(t)=\sin \left(\omega_{0} t\right)
$$

Case 1: $\omega \neq \omega_{0}$

Use undetermined coefficients to obtain a particular solution to (6) for $c=0$.
Trial solution: $y_{p}(t)=A \cos (\omega t)+B \sin (\omega t)$.
Insert in (6) and solve to find $A=\frac{1}{\omega-\omega_{0}}, B=0$ whence

$$
y(t)=\frac{1}{\omega-\omega_{0}} \cos (\omega t)+a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)
$$

is the general solution to (6). With initial conditions $y(0)=0, y^{\prime}(0)=0$ we obtain the unique solution

$$
y(t)=\frac{1}{\omega-\omega_{0}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

Example plot: $\omega=12$ and $\omega_{0}=11$

Case $\omega_{0} \neq \omega$: Fast oscillation with slowly varying amplitude

Case 2: $\omega=\omega_{0}$

For $\omega=\omega_{0}$ the trial solution solves the homogeneous equation. Multiply the trial solution by t and solve to find

$$
y(t)=\frac{1}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)+a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)
$$

the general solution to (6). With initial conditions $y(0)=0, y^{\prime}(0)=0$ this reduces to

$$
y(t)=\frac{1}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)
$$

Example plot: $\omega=\omega_{0}=11$

$$
\text { The solution } y(t)=\frac{t}{22} \sin (11 t)
$$

Case $\omega_{0}=\omega$: The amplitude grows linearly with time

Looking back and beyond

Our objective has been to construct solutions for

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

You might have noticed:

- Complex numbers and complex functions (exp!) were used to solve equations...
...even though the coefficients are real valued functions!
- Values of parameters in solutions (to solve IVP's) are determined by solving linear equations
- The Wronskian determines linear independence of solutions
- ...and in 6.1 the Wronskian showed that the system of linear equations is solvable
These observations lead to complex numbers and linear algebra.

