TMA 4115 Matematikk 3 Lecture 8 for MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

29. January 2014

7. Systems of Linear Equations

In this chapter we discuss how to solve linear equations in an efficient manner. (\rightarrow Matrices, Gaussian elimination)

A linear equation is an equation

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
 (1)

with $n \in \mathbb{N}$, b and the **coefficients** a_1, \ldots, a_n being real or complex numbers.

Example

 $4x_1 - 5x_2 = -2$ and $x_2 = \sqrt{\pi}x_1$ are linear, $4x_1 + x_1x_2 = 0$ and $x_2 = \sqrt{x_1}$ are not linear.

Systems of linear equations

A system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables x_1, \ldots, x_n .

Example
$$x_1 + x_2 + 1.5x_3 = 42$$

 $x_1 - x_3 = -7$

A **solution** of the linear system is a list (s_1, \ldots, s_n) of numbers that make each equation a true statement when we substitute each s_i for x_i , respectively.

The set of all solutions is called **solution set** of the linear system.

Two linear systems are **equivalent** if they have the same solution set.

Linear Equations in chemistry

We want to balance the reaction equation

$$\begin{array}{l} \mathsf{Ethanol} + \mathsf{Oxygen} \longrightarrow \mathsf{Carbondioxide} + \mathsf{Water} \\ C_2 H_6 O + O_2 \longrightarrow CO_2 + H_2 O \end{array}$$

Introduce indeterminates x_1, x_2, x_3, x_4 and write

$$x_1 C_2 H_6 O + x_2 O_2 = x_3 C O_2 + x_4 H_2 O$$

Find a solution with all $x_i \in \mathbb{Z}$. Use element relations to generate:

$$2x_1 + 0x_2 - 1x_3 - 0x_4 = 0$$

$$6x_1 + 0x_2 - 0x_3 - 2x_4 = 0$$

$$1x_1 + 2x_2 - 2x_3 - 1x_4 = 0$$

Solve these equations \leftrightarrow Balance the chemical reaction

A linear equation $ax_1 + bx_2 = c$ describes a line in \mathbb{R}^2 . To solve simultaneously $ax_1 + bx_2 = c$ and $dx_1 + ex_2 = f$, is to find points located on both lines. Hence there may be no, one or infinitely many solutions satisfying both equations simultaneously.

We can generalize to obtain:

A system of linear equations has

- no solution, or
- exactly one solution, or
- infinitely many solutions

We call a linear system **consistent** if it has one or infinitely many solutions and **inconsistent** if it has no solution.