n-th roots of complex numbers

Let $z = r(\cos(\theta) + i\sin(\theta))$ be a complex number and $n \in \mathbb{N}$.

We call

$$z_1 = \sqrt[n]{r} \left(\cos \left(\frac{\theta}{n} \right) + i \sin \left(\frac{\theta}{n} \right) \right)$$

the principal nth root of z.

Examples:

$$z = i = 1(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}))$$
 the principal *n*th root is $\cos(\frac{\pi}{2n}) + i(\frac{\pi}{2n})$

z = 0 the principal *n*-th root is 0.

For $z \neq 0$ there are n distinct nth roots which can be computed via

$$z_1 = \sqrt[n]{r} \left(\cos \left(\frac{\theta}{n} \right) + i \sin \left(\frac{\theta}{n} \right) \right)$$

$$z_1 = \sqrt[n]{r} \left(\cos \left(\frac{\theta}{n} \right) + i \sin \left(\frac{\theta}{n} \right) \right)$$

$$z_1 = \sqrt[n]{r} \left(\cos \left(\frac{-}{n} \right) + i \sin \left(\frac{-}{n} \right) \right)$$

$$z_1 = \sqrt{r} \left(\cos \left(\frac{\theta + 2\pi}{n} \right) + i \sin \left(\frac{\theta + 2\pi}{n} \right) \right)$$

$$z_2 = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 2\pi}{n} \right) + i \sin \left(\frac{\theta + 2\pi}{n} \right) \right)$$

- $z_2 = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 2\pi}{n} \right) + i \sin \left(\frac{\theta + 2\pi}{n} \right) \right)$

- $z_3 = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 4\pi}{r} \right) + i \sin \left(\frac{\theta + 4\pi}{r} \right) \right)$

 $z_n = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 2(n-1)\pi}{n} \right) + i \sin \left(\frac{\theta + 2(n-1)\pi}{n} \right) \right)$