The adjugate matrix

Let A be an $n \times n$ square matrix and $A_{i j}$ be the matrix obtained from A by omitting the i th row and the j th column. Then we define the adjugate of A :

$$
\begin{aligned}
\operatorname{adj} A & =\left[(-1)^{i+j}\left|A_{i j}\right|\right]^{T} \\
& =\left[\begin{array}{cccc}
(-1)^{1+1}\left|A_{i j}\right| & (-1)^{1+2}\left|A_{12}\right| & \cdots & (-1)^{1+n}\left|A_{i n}\right| \\
(-1)^{2+1}\left|A_{21}\right| & (-1)^{2+2}\left|A_{22}\right| & \cdots & (-1)^{2+n}\left|A_{2 n}\right| \\
\vdots & \vdots & \vdots & \vdots \\
(-1)^{n+1}\left|A_{n 1}\right| & (-1)^{n+2}\left|A_{n 2}\right| & \cdots & (-1)^{n+n}\left|A_{n n}\right|
\end{array}\right]^{T}
\end{aligned}
$$

If A is invertible then $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$.
For the matrix $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ one computes adj $B=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

