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Foreword

The goal of this example is to sum up several techniques we have seen. We will
use complex numbers (modulus and argument of a complex number, real part,
multiplying by the conjugate quantity. . . ); we will use differential equation tech-
niques (find the roots of the characteristic polynomial to solve the homogeneous
equation; find a particular solution). It is important that you understand how
to solve such an equation.

The last part gives motivations on why this equation is important in physics,
and what it corresponds to. You can find it interesting, but it doesn’t contain
so many techniques that you are required to know.

The equation

The goal is to study the following differential equation

y′′ + 2y′ + 9y = cos(ωt).

It corresponds to an harmonic oscillator with damping and with an outside
force being applied.

Goal 1: find the general solution of the equation

We have seen in class that it is done in two steps:

1. find the general solution of the homogeneous equation y′′ + 2y′ + 9y = 0;

2. find one particular solution of the equation y′′ + 2y′ + 9y = cos(ωt).

General solution of the homogeneous equation
We know that it is enough to find two independent solutions (which we also

called a fundamental system of solutions). To do this, solve

λ2 + 2λ+ 9 = 0

(this is the characteristic polynomial of the homogeneous equation)
We solve: ∆ = 4 − 36 = −32, so the solutions are −1 ± i2

√
2. From here,

we have two choices to express a fundamental system of solutions:
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1. If we like complex-valued functions, we pick

z1(t) = e(−1+2
√

2)t, z2(t) = e(−1−2
√

2)t.

It can be rewritten as:

z1(t) = e−te2
√

2t, z2(t) = e−te−2
√

2t

or

z1(t) = e−t(cos(2
√

2t)+i sin(2
√

2t)), z2(t) = e−t(cos(2
√

2t)−i sin(2
√

2t).

Note that z2 = z1.

2. If we don’t like complex numbers, we see that the real part of the roots is
−1 and the imaginary part is ±2

√
2. So a fundamental system of solutions

is:
y1 = e−t cos(2

√
2t) y2 = e−t sin(2

√
2t).

We found a fundamental system. Remember that the general solution of
the homogeneous equation is of the form yh = C1y1 +C2y2 for some constant
terms C1, C2. (or zh = C1z1 + C2z2 for some complex constant terms C1, C2 if
we prefer to express it as a complex function).
Particular solution of the non-homogeneous equation

We will use undetermined coefficients method. We could look for a solution
of the form

yp = a cos(ωt) + b sin(ωt).

We would substitute yp in the equation and look for which values of a and b
this is an actual solution. However, between yp, y′p and y′′p , it would be a lot of
terms. It is maybe simpler to switch to complex numbers.

The principle: cos(ωt) is the real part of eiωt. Therefore, we will look for a
particular solution zp of the equation

z′′ + 2z′ + 9z = eiωt.

To get “back to the real world”, we will let yp be the real part of zp.
So we look for zp = aeiωt, so z′p = aiωeiωt and z′′p = −aω2eiωt. We substitute

in the equation:
−aω2eiωt + 2aiωeiωt + 9aeiωt = eiωt.

We now want to solve this equation for a. Divide everything by eiωt, and get:

−aω2 + 2ωai+ 9a = 1
a(9− ω2 + 2ωi) = 1

a = 1
9− ω2 + 2ωi .
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Remark that this fraction is well defined: if 9 − ω2 + 2iω were zero, it would
mean that both its real part and imaginary part were zero at the same time. It
would mean 2iω = 0, so ω = 0. But if ω = 0, the real part is 9 − 02 = 9 6= 0.
So we are not dividing by zero, which is nice.

Note H = 1/(9 − ω2 + 2ωi). It is called the transfer function. It is a
function of ω, but it is sometimes rather seen as a function of iω: H(iω) =
1/(9 + (iω2) + 2ωi).

The particular solution is

zp = 1
9− ω2 + 2ωie

iωt.

How do we get a real particular solution? There are two ways, one which tells
more things than the other. Let’s start by the “brute force” method. It is not
recommended, but let’s do it anyway.

We want to take the real part of zp. As a first step, let’s get rid of all the
“i” on the denominator. For this, we multiply by the conjugate quantity:

1
9− ω2 + 2ωi = 9− ω2 − 2ωi

(9− ω2 + 2ωi)(9− ω2 − 2ωi)

= 9− ω2 − 2ωi
(9− ω2)2 + 4ω2

So

zp = 9− ω2 − 2ωi
(9− ω2)2 + 4ω2 (cos(ωt) + i sin(ωt))

= 1
(9− ω2)2 + 4ω2

(
(9− ω2) cos(ωt) + 2ω sin(ωt) + i

(
(9− ω2) sin(ωt)− 2ω cos(ωt)

))
(Going from line 1 to line 2 of this equation would normally be one or two more lines
of intermediate computations. Exercise: do it to see where the terms come from.)

So if we take the real part of this, we get:

yp = 1
(9− ω2)2 + 4ω2

(
(9− ω2) cos(ωt) + 2ω sin(ωt)

)
.

Not very enlightening, is it?
Here is another method to obtain the real-valued particular solution of the

equation from the complex solution. It is recommended, as it gives more mean-
ingful information. First, remark that H is a complex number (which depends
on ω). So it has a modulus and an argument. More precisely, we can write:

H = |H|eiArg(H) = |H|e−iϕ,

where ϕ = −Arg(H) (the reason for the minus sign is that it’s the way it is
usually presented in physics1). We can compute

|H| = 1√
(9− ω2) + 4ω

.

1A sociologist would probably argue that this minus sign is a social construct; a physicist
would probably say that “it makes more sense.”
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This function is noted G and is called the gain.
Furthermore, we have seen that −Arg(z) = Arg(1/z), therefore

ϕ = Arg(9− ω2 + 2ωi).

9− ω2 + 2ωi

φ

|H|

Figure 1: The argument and modulus of H. Review how to find the argument of a
complex number using the arctan function, depending on which quadrant the complex
number is in.

Now, the particular solution becomes

zp = Ge−iϕeiωt

= Gei(ωt−ϕ)

= 1√
(9− ω2) + 4ω

(
cos(ωt− ϕ) + i sin(ωt− ϕ)

)
.

And the real solution becomes easy:

yp = 1√
(9− ω2) + 4ω

cos(ωt− ϕ)

It allows a better interpretation, as we will see below.
General solution of the non-homogeneous equation

In the end, the general solution of the equation is:

1. As a complex function:

z = C1e
−tei2

√
2t + C2e

−te−i2
√

2t + 1
9− ω2 + 2ωie

iωt.

2. As a real function, version 1:

y = C1e
−t cos(2

√
2t)+C2e

−t sin(2
√

2t)+ 1
(9− ω2)2 + 4ω2

(
(9−ω2) cos(ωt)+2ω sin(ωt)

)
.

3. As a real function, better version:

y = C1e
−t cos(2

√
2t) + C2e

−t sin(2
√

2t) + 1√
(9− ω2) + 4ω

cos(ωt− ϕ).

4



Interpretation.

Let us have a look at the solution

y = C1e
−t cos(2

√
2t) + C2e

−t sin(2
√

2t) + 1√
(9− ω2) + 4ω2

cos(ωt− ϕ)

= e−t
(
C1 cos(2

√
2t) + C2 sin(2

√
2t)
)

+G cos(ωt− ϕ)

The first term (with e−t as a factor) tends to 0 as t tends to infinity. It is called
a transient term. It means that after a little while, the solution of the equation
will become closer and closer to:

y∞ = G cos(ωt− ϕ).

This term is called the steady-state term.
The system can be interpreted as follows: the right-hand term of the differ-

ential equation cos(ωt) corresponds to an input: it comes from the outside force
that is applied to our system. The solution of the equation is what we observe:
it correspond to an output. Of course, the output depends on the input. From
the form of the steady-state term, we can see that the output2 is a sinusoid, of
the same frequency ω as the input: the system was forced to oscillate at this
frequency. However, its amplitude is changed (it is multiplied by G), and there
is a phase added (a lag), corresponding to ϕ.

The phase ϕ can be interpreted as follows: imagine we are dealing with a
mass attached to a spring. When the forcing term wants to push the mass in
the positive y direction, because of the inertia, it will take a bit of time before
the mass actually goes in this direction. This lag between the external forcing
and the reaction of the system is measured by ϕ.

Let’s look at G and ϕ in more details. Below is a plot of G as a function of
ω.
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We see that the gain has a maximum. (It is possible to study the function
ω 7→ (9−ω2)2 +4ω2; the value of ω for which this function is minimal is the one

2After the transient term dies out.
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for which G is maximum). This specific value of ω corresponds to a frequency
of resonance. If the damping were very very low, this frequency of resonance
would be approximately ω0 = 3. Remark also how when ω tends to infinity, the
gain tends to 0.

As for ϕ, let us see at what happens when ω tends to 0 (very slow), and
when ω tends to infinity (very high frequency). Let us plot parametrically the
set of all (9 − ω2) + 2ωi on the complex plane, in terms of the parameter ω.
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We see that it is a parabola. The point on the positive real axis corresponds
to ω = 0, and corresponds to ϕ = 0. The point on the imaginary axis (ϕ = π/2)
corresponds to ω = 3. As ω tends to infinity, we see that the imaginary part
goes much faster to −∞ than the real part goes to +∞. Therefore, ϕ tends to
π as ω tends to +∞.

If the damping is very low (even lower than in this example), the movements
of the driving force and the oscillator are in phase when the frequency is low;
they are out of phase by π/2 around the resonance frequency; they are out of
phase by π if the frequency is very high. See the lined video.

http://www.youtube.com/watch?v=aZNnwQ8HJHU
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