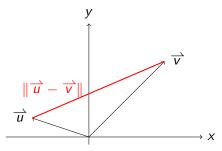

In today's lecture we will

- explore the geometry of \mathbb{R}^n .
- define the length of vectors
- investigate when vectors are orthogonal

Geometry of \mathbb{R}^n : Length of vectors

Length in 3d:

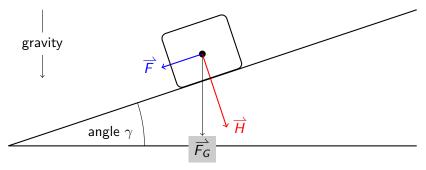


Pythagoras: length of $\begin{bmatrix} a \\ b \end{bmatrix}$ is $\sqrt{a^2 + b^2}$

Pythagoras (2 times!):
length of
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 is $\sqrt{a^2 + b^2 + c^2}$

Distance between two vectors

How can we measure the distance between points?

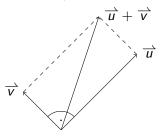

Distance between vectors

$$\mathsf{dist}(\overrightarrow{u},\overrightarrow{v}) = \|\overrightarrow{u} - \overrightarrow{v}\|$$

Note:
$$\|\overrightarrow{u} - \overrightarrow{v}\| = \|\overrightarrow{v} - \overrightarrow{u}\|.$$

Example: Splitting forces in physics

Say we know the weight of a block on a slope:



Can compute \overrightarrow{F}_G from the weight but we want: \overrightarrow{F} , the force acting on the block in the direction of the slope.

Note: \overrightarrow{F} and \overrightarrow{H} are orthogonal! \rightarrow Idea: split \overrightarrow{F}_{G} in orthogonal components

What does orthogonal mean?

If vectors \overrightarrow{u} and \overrightarrow{v} in \mathbb{R}^2 meet in a right angle, they are **perpendicular** (or **orthogonal**):

Pythagoras theorem

 $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$ Comparing both sides, the equation holds if and only if:

$$\overrightarrow{u}\cdot\overrightarrow{v}=0$$

Idea: Use this to define orthogonal vectors in general settings.