TMA 4115 Matematikk 3 Introduction for MTFYMA

Alexander Schmeding

NTNU

11. January 2016

Homepage

General information for the course Matematikk 3:

https://wiki.math.ntnu.no/tma4115/2016v

Specific information for MTFYMA:

https://wiki.math.ntnu.no/tma4115/2016v/as

(all slides used in the lecture will appear on this page)

At the end of the course there will be a written exam (further information on the homepage).

To take the exam: Deliver **at least 8** exercise sets, which get approved.

Note: No exercise classes in the first week!

Advice: Do as many exercises as possible!

Alexander Schmeding

Email: alexander.schmeding@math.ntnu.no

Office: Sentralbygg 2, Room 1202

Phone: 73593540

Office hours: Tuesday, 9-10

Reference groups – Important!

We need 3-4 students for the reference group of this course.

At least 1 student from each line of study (i.e. mathematics and physics).

If you are interested please sign the list in the break.

Topics of this course

- Complex Numbers
- Differential Equations I: Second Order Differential Equations
- Differential Equations II: Systems of differential equations
- Linear Algebra and Application
 - Matrices
 - Systems of linear equations
 - Vector spaces

We know the following sets of numbers:

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$
Natural numbers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

$$\mathbb{Q} = \left\{ \frac{m}{n} \middle| m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

$$\mathbb{R} = \text{Rational numbers and} \\ \text{irrational numbers (e.g. } \sqrt{2}, \pi, \ldots)$$

Natural numbers Integers Rational numbers Real Numbers

Problem:

With all these numbers, we still can not solve the equation

$$x^2 = -1$$

since for real numbers $x^2 \ge 0$.

Solution:

We need new numbers, the complex numbers.

Why complex numbers?

• Our aim: See that complex numbers are an important tool which make things easier.

Jacques Hadamard

The shortest path between two truths in the real domain passes through the complex domain.

Complex does not mean complicated!