TMA 4115 Matematikk 3
 Lecture 10 for MTFYMA

Alexander Schmeding

NTNU

10. February 2016

In this lecture we discuss...

- introduce vectors
- relate them to linear equations
- discuss operations with vectors (in particular their "span")

Solving linear systems

Given a linear system as

$$
\begin{align*}
x_{1}+5 x_{2}+3 x_{3}+2 x_{4} & =4 \\
x_{1}-2 x_{3}+2 x_{4} & =0 \tag{2}\\
2 x_{2}+4 x_{3}+2 x_{4} & =1
\end{align*}
$$

find $x_{1}, x_{2}, x_{3}, x_{4}$ which simultaneously satisfy (2).
Use elementary operations to replace (2) with an equivalent system which is easier.
But first: Rewrite (2) as an augmented matrix

$$
\left[\begin{array}{ccccc}
1 & 5 & 3 & 2 & 4 \\
1 & 0 & -2 & 2 & 0 \\
0 & 2 & 4 & 2 & 1
\end{array}\right]
$$

Then apply elementary row operations and the Gaussian elimination to obtain a matrix in (reduced) echelon form.

Row operations \& Gaussian elimination

Elementary row operations:

- Interchange two rows,
- add a multiple of another row to a row, or
- multiply by a non-zero number.

Gaussian elimination uses these operations, to compute (reduced) Echelon form.

Idea: Start in the left upper corner and work to the bottom right, using elementary operations.

The steps to compute Echelon form are usually carried out first. We call this the forward phase (from left upper corner down). Transforming from Echelon to reduced Echelon form is called the backward phase (from right bottom move up, to reduce computation).

Pivot positions

Theorem: For each matrix, there is a unique matrix in reduced echelon form such that both matrices are equivalent via elementary row operations.

Pivot positions are positions in a matrix which coincide with a leading one in reduced echelon form

$$
\left[\begin{array}{ccccc}
1 & 5 & 3 & 2 & 4 \\
1 & 0 & -2 & 2 & 0 \\
0 & 2 & 4 & 2 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccr}
1 & 0 & 0 & 4 & -\frac{6}{10} \\
0 & 1 & 0 & -1 & 1.1 \\
0 & 0 & 1 & 1 & -\frac{3}{10}
\end{array}\right]
$$

A pivot column is a column with a pivot position.
The reduced echelon matrix yields solutions for (2):
$x_{1}=-\frac{6}{10}-4 x_{4}, x_{2}=x_{4}+1.1, x_{3}=-\frac{3}{10}-x_{4}, x_{4} \in \mathbb{R}$.

Basic variables and free variables

7.10 Definition A variable x_{i} of a linear system is called ...

- basic variable if it corresponds to a pivot column,
- free variable if the associated column does not have a pivot position.
7.11 Theorem A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column. If the linear system is consistent, then there
(a) is a unique solution if there are no free variables
(b) infinitely many solutions if there are free variables

Revisiting a chemical reaction equation

Ethanol + Oxygen \longrightarrow Carbondioxide + Water

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

we generated (somehow) the linear equations

$$
\begin{align*}
& 2 x_{1}+0 x_{2}-1 x_{3}-0 x_{4}=0 \\
& 6 x_{1}+0 x_{2}-0 x_{3}-2 x_{4}=0 \tag{1}\\
& 1 x_{1}+2 x_{2}-2 x_{3}-1 x_{4}=0
\end{align*}
$$

How can we do this in a more systematic way?
Idea: The chemical formulae are just lists how many atoms of different kinds are present!
Can write: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightsquigarrow\left[\begin{array}{l}2 \\ 6 \\ 1\end{array}\right], \mathrm{O}_{2} \rightsquigarrow\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right], \mathrm{CO}_{2} \rightsquigarrow\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathrm{H}_{2} \mathrm{O} \rightsquigarrow\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$

We call the ordered lists obtained in this way vectors and naïvely write (1) as follows:

$$
x_{1} \cdot\left[\begin{array}{l}
2 \tag{2}\\
6 \\
1
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]-x_{3} \cdot\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]-x_{4} \cdot\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Note: At the moment we have not defined,,+- for vectors!
However, we would like,,+- to be defined such that (2) means the same as equation (1).

Definition of vectors

Definition 8.1 (Vector)

A vector is an ordered list of numbers $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}$ (or \mathbb{C}) for $n \in \mathbb{N}$. We write

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

Further we let \mathbb{R}^{n} be the set of all vectors of length n.
Special example: $\overrightarrow{0}$ the zero vector (all entries are 0)
To save space we will also often write $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

