TMA 4115 Matematikk 3
 Lecture 11 for MTFYMA

Alexander Schmeding

NTNU

15. February 2016

In todays lecture we discuss...

- linear equations and their relations to vector and matrix equations
- again solution sets of linear equations

Vectors

Vectors \approx ordered list of numbers.
$\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$ set of vectors of length n (i.e. vectors with n entries from $\mathbb{R}($ or $\mathbb{C})$).

Have operations,+- for vectors and $r \cdot \vec{v}$ for $r \in \mathbb{R}$ (or \mathbb{C}).

linear combination of vectors

$\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ is a weighted sum

$$
\sum_{l=1}^{k} r_{l} \overrightarrow{v_{l}}=r_{1} \overrightarrow{v_{1}}+\ldots+r_{k} \overrightarrow{v_{k}}
$$

span $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}=$ set of all linear combinations of $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$
Examples of spans (in \mathbb{R}^{2}) where a point (origin!), lines through the origin and the whole plane.

A picture of span $\{(1,1,1),(1,0,0)\}$

The vectors are not multiples of each other (and both are not $\overrightarrow{0}$), so they span a plane in \mathbb{R}^{3}.

Linear systems vs. vector equations vs. matrices

$$
\begin{array}{r}
x_{1}+5 x_{2}+3 x_{3}+2 x_{4}=4 \\
x_{1}-2 x_{3}+2 x_{4}=0 \\
2 x_{2}+4 x_{3}+2 x_{4}=1
\end{array}
$$

can be rewritten as a vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

Solutions to the linear system \leftrightarrow solutions to the vector equation.
Also the linear system is represented by the augmented matrix

$$
\left[\begin{array}{ccccc}
1 & 5 & 3 & 2 & 4 \\
1 & 0 & -2 & 2 & 0 \\
0 & 2 & 4 & 2 & 1
\end{array}\right]
$$

Linear systems vs. vector equations vs. matrices II

The augmented matrix is used to solve the linear system but the matrix representation is a representation and not an equation.

Question: Can we rewrite the linear system as a matrix equation? Idea: Compare the coefficients matrix of the linear system

$$
A=\left[\begin{array}{cccc}
1 & 5 & 3 & 2 \\
1 & 0 & -2 & 2 \\
0 & 2 & 4 & 2
\end{array}\right]=\left[\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right] \quad\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]\right]
$$

with the vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

Linear systems vs. vector equations vs. matrices III

Then we define for $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ the equation $A \vec{x}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$ to mean the same as the vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

In fact we can use this principle to define a product $A \vec{x}$ for any suitable vector \vec{x} !

