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In todays lecture we discuss...
linear equations and their relations to vector and matrix
equations
again solution sets of linear equations
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Vectors

Vectors ≈ ordered list of numbers.
Rn (or Cn) set of vectors of length n

(i.e. vectors with n entries from R (or C)).

Have operations +,− for vectors and r ·⇀v for r ∈ R (or C).

linear combination of vectors
⇀v1 , . . . , ⇀vk ∈ Rn is a weighted sum

k∑
l=1

rl
⇀vl = r1

⇀v1 + . . . + rk
⇀vk

span {⇀v1 , . . . , ⇀vk } = set of all linear combinations of ⇀v1 , . . . , ⇀vk

Examples of spans (in R2) where a point (origin!), lines through
the origin and the whole plane.
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A picture of span { (1, 1, 1), (1, 0, 0) }

The vectors are not multiples of each other (and both are not ⇀0 ),
so they span a plane in R3.



Recap: Vector equations

Linear systems vs. vector equations vs. matrices

x1 + 5x2 + 3x3 + 2x4 = 4
x1 − 2x3 + 2x4 = 0

2x2 + 4x3 + 2x4 = 1
can be rewritten as a vector equation
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Solutions to the linear system ↔ solutions to the vector equation.

Also the linear system is represented by the augmented matrix1 5 3 2 4
1 0 −2 2 0
0 2 4 2 1


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Linear systems vs. vector equations vs. matrices II

The augmented matrix is used to solve the linear system but the
matrix representation is a representation and not an equation.

Question: Can we rewrite the linear system as a matrix equation?
Idea: Compare the coefficients matrix of the linear system
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with the vector equation
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Linear systems vs. vector equations vs. matrices III

Then we define for ⇀x = (x1, x2, x3, x4) the equation A⇀x =

4
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mean the same as the vector equation
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In fact we can use this principle to define a product A⇀x for any
suitable vector ⇀x !
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